TY - GEN A1 - Kaplan, Bernhard A1 - Laufer, Jan A1 - Prohaska, Steffen A1 - Buchmann, Jens T1 - Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography N2 - The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distributions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo models of the light transport are computationally expensive, but provide accurate fluence distributions predictions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar detection geometry. The combination of the optical and acoustic models is shown to account for limited-view artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the tissue phantom was estimated using a coordinate descent parameter search based on the comparison between measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 % compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood oxygenation from experimental data. T3 - ZIB-Report - 17-04 KW - quantitative photoacoustic tomography KW - model-based inversion KW - oxygen saturation KW - chromophore concentration KW - photoacoustic imaging KW - Monte Carlo methods for light transport KW - boundary conditions KW - coordinate search Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62318 SN - 1438-0064 ER - TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yasuda, Masaya A1 - Kaji, Shizuo A1 - Yamamura, Keiichiro A1 - Fujisawa, Katsuki T1 - Massively parallel sharing lattice basis reduction N2 - For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments. T3 - ZIB-Report - 21-38 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85209 SN - 1438-0064 N1 - under review ER - TY - GEN A1 - Clasen, Malte A1 - Paar, Philip A1 - Prohaska, Steffen T1 - Level of Detail for Trees Using Clustered Ellipsoids N2 - We present a level of detail method for trees based on ellipsoids and lines. We leverage the Expectation Maximization algorithm with a Gaussian Mixture Model to create a hierarchy of high-quality leaf clusterings, while the branches are simplified using agglomerative bottom-up clustering to preserve the connectivity. The simplification runs in a preprocessing step and requires no human interaction. For a fly by over and through a scene of 10k trees, our method renders on average at 40 ms/frame, up to 6 times faster than billboard clouds with comparable artifacts. T3 - ZIB-Report - 11-41 KW - level of detail KW - rendering KW - natural scene KW - Gaussian mixture model Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14251 SN - 1438-0064 ER - TY - THES A1 - Krause, Jan T1 - Investigation of Options to Handle 3D MRI Data via Convolutional Neural Networks Application in Knee Osteoarthritits Classification KW - Machine Learning KW - Computational Diagnosis KW - Knee Osteoarthritis Y1 - 2021 ER - TY - GEN A1 - Ribera Borrell, Enric A1 - Quer, Jannes A1 - Richter, Lorenz A1 - Schütte, Christof T1 - Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics N2 - Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings. T3 - ZIB-Report - 21-40 KW - importance sampling KW - stochastic optimal control KW - rare event simulation KW - metastability KW - neural networks KW - metadynamics Y1 - 2021 SN - 1438-0064 ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - FiberSCIP - A shared memory parallelization of SCIP N2 - Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated. T3 - ZIB-Report - 13-55 KW - parallel KW - branch-and-bound KW - deterministic parallelism KW - constraint integer programming KW - mixed integer programming KW - mixed integer nonlinear programming KW - SCIP KW - MIP KW - MINLP Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42595 SN - 1438-0064 ER - TY - GEN A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes N2 - We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements. T3 - ZIB-Report - 13-38 KW - digitally reconstructed radiographs KW - volume rendering KW - mesh deformation KW - statistical shape and intensity models KW - image registration KW - GPU acceleration Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41896 SN - 1438-0064 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Werner, Axel A1 - Wessäly, Roland T1 - Estimating trenching costs in FTTx network planning N2 - In this paper we assess to which extent trenching costs of an FTTx network are unavoidable, even if technical side constraints are neglected. For that purpose we present an extended Steiner tree model. Using a variety of realistic problem instances we demonstrate that the total trenching cost can only be reduced by about 5 percent in realistic scenarios. This work has been funded by BMBF (German Federal Ministry of Education and Research) within the program "KMU-innovativ". T3 - ZIB-Report - 11-49 KW - Optical access networks KW - Optimization KW - Steiner trees Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14884 SN - 1438-0064 ER - TY - THES A1 - Paskin, Martha T1 - Estimating 3D Shape of the Head Skeleton of Basking Sharks Using Annotated Landmarks on a 2D Image N2 - Basking sharks are thought to be one of the most efficient filter-feeding fish in terms of the throughput of water filtered through their gills. Details about the underlying morphology of their branchial region have not been studied due to various challenges in acquiring real-world data. The present thesis aims to facilitate this, by developing a mathematical shape model which constructs the 3D structure of the head skeleton of a basking shark using annotated landmarks on a single 2D image. This is an ill-posed problem as estimating the depth of a 3D object from a single 2D view is, in general, not possible. To reduce this ambiguity, we create a set of pre-defined training shapes in 3D from CT scans of basking sharks. First, the damaged structures of the sharks in the scans are corrected via solving a set of optimization problems, before using them as accurate 3D representations of the object. Then, two approaches are employed for the 2D-to-3D shape fitting problem–an Active Shape Model approach and a Kendall’s Shape Space approach. The former represents a shape as a point on a high-dimensional Euclidean space, whereas the latter represents a shape as an equivalence class of points in this Euclidean space. Kendall’s shape space approach is a novel technique that has not yet been applied in this context, and a comprehensive comparison of the two approaches suggests this approach to be superior for the problem at hand. This can be credited to an improved interpolation of the training shapes. N2 - Riesenhaie zählen zu den effizientesten Filtrierern hinsichtlich des durch die Kiemen gefilterten Wasservolumens. Die Kiemenregion dieser Tiere besitzt eine markante Morphologie, die jedoch bisher nicht umfassend erforscht werden konnte, da es schwierig ist, reale Daten dieser Tiere zu erheben. Die vorliegende Arbeit zielt darauf ab, dies durch die Entwicklung eines mathematischen Formmodels zu ermöglichen, das es erlaubt, die 3D-Struktur des Schädelskeletts anhand von Landmarken, die auf einem 2D-Bild platziert werden, zu rekonstruieren. Die hierzu benötigte Tiefenbestimmung der Landmarken aus einer 2D-Projektion ist ein unterbestimmtes Problem. Wir lösen dies durch die Hinzunahme von Trainingsformen, welche wir aus CT-Scans von Riesenhaien gewinnen. Der Zustand der tomografierten Exemplare erfordert jedoch einen vorhergehenden Korrekturschritt, den wir mit Hilfe eines Optimierungsansatzes lösen, bevor die extrahierten Strukturen als 3D-Trainingsformen dienen können. Um die 3D-Struktur des Schädelskelettes aus 2D-Landmarken zu rekonstruieren, vergleichen wir zwei Ansätze – den sogenannten Active-Shape-Model (ASM)-Ansatz und einen Ansatz basierend auf Kendalls Formenraum. Während eine Form des ASM-Ansatzes durch einen Punkt in einem hochdimensionalen Euklidischen Raum repräsentiert ist, repräsentiert eine Form im Kendall-Formenraum eine Äquivalenzklasse von Punkten des Euklidischen Raumes. Die Anwendung des Kendall-Formenraumes für das beschriebene Problem ist neu und ein umfassender Vergleich der Methoden hat ergeben, dass dieser Ansatz für die spezielle Anwendung zu besseren Ergebnissen führt. Wir führen dies auf die überlegene Interpolation der Trainingsformen in diesem Raum zurück. Y1 - 2022 UR - https://arxiv.org/abs/2207.12687 ER - TY - THES A1 - Witzig, Jakob T1 - Effiziente Reoptimierung in Branch&Bound-Verfahren für die Steuerung von Aufzügen N2 - Heutzutage ist eine Vielzahl der mehrstöckigen Gebäude mit Personenaufzugsgruppen ausgestattet. Uns wohl bekannt sind die sogenannten konventionellen Systeme. Bei diesen Systemen betätigt jeder ankommende Passagier eine der beiden Richtungstasten und teilt dem dahinterstehenden Steuerungsalgorithmus seine gewünschte Startetage und Fahrtrichtung mit. Betreten wird der zuerst auf der Startetage ankommende Aufzug mit gleicher Fahrtrichtung und ausreichend Kapazität. Die entsprechende Zieletage wird dem System erst nach dem Betreten der Fahrgastkabine mitgeteilt. Neben diesen konventionellen Systemen gibt es Aufzugsgruppen mit Zielrufsteuerung. Die Besonderheit eines zielrufgesteuerten Systems ist, dass ein ankommender Passagier bereits auf der Startetage seine gewünschte Zieletage angibt und eine Rückmeldung vom System erhält, welchen Aufzug er nutzen soll. Diese Zuweisung durch das System hat das Ziel, die Warte- und Reisezeiten der Passagiere zu minimieren. Ein wesentlicher Faktor bei der Berechnung warte- und reisezeitminimaler Fahrpläne ist das momentane Verkehrsmuster. Eine Einteilung der Verkehrsszenarien lässt sich am besten bei Bürogebäuden vornehmen. So ist es typisch für die Morgenstunden, dass jeder Passagier auf einer Zugangsebene seine Fahrt beginnt und alle Passagiere die gleiche Fahrtrichtung haben. Unter einer Zugangsebene ist z. B. der Haupteingang oder ein Parkdeck zu verstehen. Ein weiterer wesentlicher Punkt bei Zielrufsystemen ist die Art der Zuweisung der Passagiere durch das System. Zum einen gibt es unmittelbar zuweisende (UZ-) Systeme. In einem UZ-System wird nach jeder Ankunft eines Passagiers eine Momentaufnahme des momentanen Verkehrs erstellt und es findet eine Neuplanung und Zuweisung statt. Eine solche Momentaufnahme werden wir im späteren Verkauf als Schnappschussproblem bezeichnen. Jeder Passagier bekommt im Anschluss an die Lösung des Schnappschussproblems eine Mitteilung vom System, z. B. über ein Display, welchen Aufzug er benutzen soll. Zum anderen gibt es verzögert zuweisende (VZ-) Systeme. In diesen Systemen wird die Erstellung und Lösung eines Schnappschussproblems bis kurz vor Ankunft eines Aufzuges auf einer Etage verzögert. In einem VZ-System teilt das System allen wartenden Passagieren die geplanten Zieletagen des ankommenden Aufzugs mit. Jeder Passagier, der einen Ruf getätigt hat und zu einer dieser Zieletagen fahren will, kann jetzt diesen Aufzug betreten. Durch die Verzögerung muss im Vergleich zu einem UZ-System eine weitaus größere Menge von Passagieren zugewiesen werden. Dadurch kann der Lösungsprozess bedeutend aufwändiger werden. Vorteil eines VZ-Systems ist hingegen der größere Freiheitsgrad bei der Optimierung, da aufgrund der späten Zuweisung die weitere Verkehrsentwicklung mit einbezogen werden kann. VZ-Systeme sind aufgrund des größeren Freiheitsgrades interessant für die Praxis ist, wir uns demzufolge in dieser Arbeit mit einer effizienteren Lösung dieser Art von Schnappschussproblemen befassen. Es genügt dabei den Lösungsprozess eines Schnappschussproblems zu betrachten. Das Ziel ist eine Reduzierung der benötigten Rechenzeit. Unter Reoptimierung verstehen wir die Konstruktion zulässiger Spalten in den jeweiligen Iterationsrunden der Spaltengenerierung innerhalb eines Schnappschussproblems. Als eine Iterationsrunde bezeichnet wir einer Menge zulässiger Touren mit negativen reduzierten Kosten. Eine effiziente Reoptimierung zeichnet sich durch die Wiederverwendung und Aufbereitung von Informationen aus vorangegangenen Iterationsrunden desselben Schnappschussproblems aus. Zu den wichtigen Informationen gehört der konstruierte Suchbaum der vorherigen Iterationsrunde mit seinen ausgeloteten (abgeschnittenen) Blättern sowie konstruierten Touren bzw. Spalten, welche in der Iterationsrunde ihrer Konstruktion nicht zur Lösung des Teilproblems der Spaltengenerierung beitrugen. Eine solche Wiederverwendung und Aufbereitung von Informationen nennen wir Warmstart. Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42210 ER - TY - GEN A1 - Becker, Kai-Helge A1 - Hiller, Benjamin T1 - Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited N2 - In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested. T3 - ZIB-Report - 20-05 KW - acyclic orientations KW - enumeration algorithm KW - multiple sources and sinks KW - bipolar orientations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77684 SN - 1438-0064 ER - TY - GEN A1 - Chrapary, Hagen A1 - Dalitz, Wolfgang A1 - Neun, Winfried A1 - Sperber, Wolfram T1 - Design, concepts, and state of the art of the swMATH service N2 - In this paper, the concepts and design for an efficient information service for mathematical software and further mathematical research data are presented. The publication-based approach and the Web-based approach are the main building blocks of the service and will be discussed. Heuristic methods are used for identification, extraction, and ranking of information about software and other mathematical research data. The methods provide not only information about the research data but also link software and mathematical research data to the scientific context. T3 - ZIB-Report - 17-11 KW - software information, software citation, mathematical research data Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62263 SN - 1438-0064 ER - TY - GEN A1 - Nielsen, Adam A1 - Weber, Marcus T1 - Computing the nearest reversible Markov chain N2 - Reversible Markov chains are the basis of many applications. However, computing transition probabilities by a finite sampling of a Markov chain can lead to truncation errors. Even if the original Markov chain is reversible, the approximated Markov chain might be non-reversible and will lose important properties, like the real valued spectrum. In this paper, we show how to find the closest reversible Markov chain to a given transition matrix. It turns out that this matrix can be computed by solving a convex minimization problem. T3 - ZIB-Report - 14-48 KW - Reversible Markov Chain KW - Convex Optimization KW - MSM Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53292 SN - 1438-0064 ER - TY - JOUR A1 - Nielsen, Adam A1 - Weber, Marcus T1 - Computing the nearest reversible Markov chain JF - Numerical Linear Algebra with Applications N2 - Reversible Markov chains are the basis of many applications. However, computing transition probabilities by a finite sampling of a Markov chain can lead to truncation errors. Even if the original Markov chain is reversible, the approximated Markov chain might be non-reversible and will lose important properties, like the real valued spectrum. In this paper, we show how to find the closest reversible Markov chain to a given transition matrix. It turns out that this matrix can be computed by solving a convex minimization problem. KW - Reversible Markov Chain KW - Convex Optimization KW - MSM Y1 - 2015 U6 - https://doi.org/10.1002/nla.1967 VL - 22 IS - 3 SP - 483 EP - 499 ER - TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yamamura, Keiichiro A1 - Yoshida, Akihiro A1 - Kaji, Shizuo A1 - Yasuda, Masaya A1 - Fujisawa, Katsuki T1 - CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems N2 - Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments. T3 - ZIB-Report - 21-16 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82802 SN - 1438-0064 N1 - Revised version is accepted to HiPC 2021 ER - TY - GEN A1 - Ito, Satoshi A1 - Shinano, Yuji T1 - Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria N2 - The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds. T3 - ZIB-Report - 18-51 KW - Sports league KW - Round-robin tournament KW - Tiebreaking criteria KW - Clinch number KW - Elimination number KW - Combinatorial optimization KW - Integer programming Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70591 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Zakrzewska, Anna A1 - D'Andreagiovanni, Fabio A1 - Ruepp, Sarah A1 - Berger, Michael S. T1 - Biobjective Optimization of Radio Access Technology Selection and Resource Allocation in Heterogeneous Wireless Networks N2 - We propose a novel optimization model for resource assignment in heterogeneous wireless network. The model adopts two objective functions maximizing the number of served users and the minimum granted utility at once. A distinctive feature of our new model is to consider two consecutive time slots, in order to include handover as an additional decision dimension. Furthermore, the solution algorithm that we propose refines a heuristic solution approach recently proposed in literature, by considering a real joint optimization of the considered resources. The simulation study shows that the new model leads to a significant reduction in handover frequency, when compared to a traditional scheme based on maximum SNR. T3 - ZIB-Report - 13-63 KW - Heterogeneous Wireless Networks, Biobjective Optimization, Mixed Integer Linear Programming, Simulation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42675 UR - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6576416&isnumber=6576384 SN - 1438-0064 ER - TY - GEN A1 - Schäfer, Patrick T1 - Bag-Of-SFA-Symbols in Vector Space (BOSS VS) N2 - Time series classification mimics the human understanding of similarity. When it comes to larger datasets, state of the art classifiers reach their limits in terms of unreasonable training or testing times. One representative example is the 1-nearest-neighbor DTW classifier (1-NN DTW) that is commonly used as the benchmark to compare to and has several shortcomings: it has a quadratic time and it degenerates in the presence of noise. To reduce the computational complexity lower bounding techniques or recently a nearest centroid classifier have been introduced. Still, execution times to classify moderately sized datasets on a single core are in the order of hours. We present our Bag-Of-SFA-Symbols in Vector Space (BOSS VS) classifier that is robust and accurate due to invariance to noise, phase shifts, offsets, amplitudes and occlusions. We show that it is as accurate while being multiple orders of magnitude faster than state of the art classifiers. Using the BOSS VS allows for mining massive time series datasets and real-time analytics. T3 - ZIB-Report - 15-30 KW - Time Series KW - Classification KW - Data Mining Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54984 SN - 1438-0064 ER - TY - GEN A1 - Weber, Britta A1 - Tranfield, Erin M. A1 - Höög, Johanna L. A1 - Baum, Daniel A1 - Antony, Claude A1 - Hyman, Tony A1 - Verbavatz, Jean-Marc A1 - Prohaska, Steffen T1 - Automated stitching of microtubule centerlines across serial electron tomograms N2 - Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. T3 - ZIB-Report - 14-41 KW - electron tomography KW - microtubules KW - serial sectioning KW - image analysis KW - geometry reconstruction KW - image and geometry alignment KW - point correspondence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52958 SN - 1438-0064 ER - TY - THES A1 - Hoffmann, Marie T1 - Approximate Algorithms for Distributed Systems N2 - Peer-to-peer (P2P) systems form a special class of distributed systems. Typically, nodes in a P2P system are flat and share the same responsabilities. In this thesis we focus on three problems that occur in P2P systems: the storage of data replicates, quantile computation on distributed data streams, and churn rate estimation. Data replication is one of the oldest techniques to maintain stored data in a P2P system and to reply to read requests. Applications, which use data replication are distributed databases. They are part of an abstract overlay network and do not see the underlying network topology. The question is how to place a set of data replicates in a distributed system such that response times and failure probabilities become minimal without a priori knowledge of the topology of the underlying hardware nodes? We show how to utilize an agglomerative clustering procedure to reach this goal. State-of-the-art algorithms for aggregation of distributed data or data streams require at some point synchronization, or merge data aggregates hierarchically, which does not accompany the basic principle of P2P systems. We test whether randomized communication and merging of data aggregates are able to produce the same results. These data aggregates serve for quantile queries. Constituting and maintaining a P2P overlay network requires frequent message passing. It is a goal to minimize the number of maintenance messages since they consume bandwidth which might be missing for other applications. The lower bound of the frequency for mainte- nance messages is highly dependent on the churn rate of peers. We show how to estimate the mean lifetime of peers and to reduce the frequency for maintenance messages without destabilizing the infrastructure of the constituting overlay. KW - peer-to-peer, machine learning, approximate, clustering, quantile, linear regression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42370 ER - TY - GEN A1 - Fujii, Koichi A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Mittelmann, Hans D. A1 - Shinano, Yuji T1 - An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c N2 - Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with 1.0% gap is shown to be still quite difficult. T3 - ZIB-Report - 23-27 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-93072 SN - 1438-0064 ER - TY - GEN A1 - Quer, Jannes A1 - Donati, Luca A1 - Keller, Bettina A1 - Weber, Marcus T1 - An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates N2 - In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities. T3 - ZIB-Report - 17-09 KW - Adaptive Importance Sampling KW - Molecular Dynamics KW - Metastability KW - Variance Reduction KW - Non Equilibrium Sampling KW - Metadynamics KW - Girsanov Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62075 SN - 1438-0064 ER - TY - GEN A1 - Pfeuffer, Frank A1 - Werner, Axel T1 - Adaptive telecommunication network operation with a limited number of reconfigurations N2 - Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators’ concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch & Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin. T3 - ZIB-Report - 15-36 KW - Telecommunication KW - Network Design KW - Dynamic Traffic KW - Branch and Bound Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55547 SN - 1438-0064 ER - TY - GEN A1 - Wolf, Thomas T1 - A Study of Genetic Algorithms solving a combinatorial Puzzle N2 - The suitability of Genetic Algorithms (GAs) to solve a combinatorial problem with only one solution is investigated. The dependence of the performance is studied for GA-hard and GA-soft fitness functions, both with a range of different parameter values and different encodings. T3 - ZIB-Report - SC-98-01 Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3445 ER - TY - GEN A1 - Hosoda, Junko A1 - Maher, Stephen J. A1 - Shinano, Yuji A1 - Villumsen, Jonas Christoffer T1 - A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network N2 - Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems. T3 - ZIB-Report - 23-02 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89700 SN - 1438-0064 ER - TY - GEN A1 - Büsing, Christina A1 - D'Andreagiovanni, Fabio T1 - A new theoretical framework for Robust Optimization under multi-band uncertainty N2 - We provide an overview of our main results about studying Linear Programming Problems whose coefficient matrix is subject to uncertainty and the uncertainty is modeled through a multi-band set. Such an uncertainty set generalizes the classical one proposed by Bertsimas and Sim and is particularly suitable in the common case of arbitrary non-symmetric distributions of the parameters. Our investigations were inspired by practical needs of our industrial partner in ongoing projects with focus on the design of robust telecommunications networks. T3 - ZIB-Report - 13-61 KW - Robust Optimization, Uncertainty Set, Multiband Robustness, Network Design Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42644 UR - http://www.springer.com/business+%26+management/operations+research/book/978-3-319-00794-6 SN - 1438-0064 ER - TY - GEN A1 - Paskin, Martha A1 - Baum, Daniel A1 - Dean, Mason N. A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks -- Source Code and Data N2 - Source code and novel dataset of basking shark head skeletons facilitating the reproduction of the results presented in 'A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks' - ECCV 2022. Y1 - 2022 U6 - https://doi.org/10.12752/8730 ER - TY - GEN A1 - D'Andreagiovanni, Fabio A1 - Krolikowski, Jonatan A1 - Pulaj, Jonad T1 - A hybrid primal heuristic for Robust Multiperiod Network Design N2 - We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap. T3 - ZIB-Report - 13-78 KW - Multiperiod Network Design, Traffic Uncertainty, Robust Optimization, Multiband Robustness, Hybrid Heuristics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-44081 SN - 1438-0064 ER - TY - THES A1 - Shestakov, Alexey T1 - A Deep Learning Method for Automated Detection of Meniscal Tears in Meniscal Sub-Regions in 3D MRI Data N2 - This work presents a fully automated pipeline, centered around a deep neural network, as well as a method to train that network in an efficient manner, that enables accurate detection of lesions in meniscal anatomical subregions. The network architecture is based on a transformer encoder/decoder. It is trained on DESS and tuned on IW TSE 3D MRI scans sourced from the Osteoarthritis Initiative. Furthermore, it is trained in a multilabel, and multitask fashion, using an auxiliary detection head. The former enables implicit localisation of meniscal defects, that to the best of my knowledge, has not yet been reported elsewhere. The latter enables efficient learning on the entire 3D MRI volume. Thus, the proposed method does not require any expert knowledge at inference. Aggregated inference results from two datasets resulted in an overall AUCROC result of 0.90, 0.91 and 0.93 for meniscal lesion detection anywhere in the knee, in medial and in lateral menisci respectively. These results compare very well to the related work, even though only a fraction of the data has been utilized. Clinical applicability and benefit is yet to be determined. KW - Machine Learning KW - Computational Diagnosis KW - Knee Osteoarthritis Y1 - 2021 ER - TY - GEN A1 - Büsing, Christina A1 - D'Andreagiovanni, Fabio A1 - Raymond, Annie T1 - 0-1 Multiband Robust Optimization N2 - We provide an overview of new theoretical results that we obtained while further investigating multiband robust optimization, a new model for robust optimization that we recently proposed to tackle uncertainty in mixed-integer linear programming. This new model extends and refines the classical Gamma-robustness model of Bertsimas and Sim and is particularly useful in the common case of arbitrary asymmetric distributions of the uncertainty. Here, we focus on uncertain 0-1 programs and we analyze their robust counterparts when the uncertainty is represented through a multiband set. Our investigations were inspired by the needs of our industrial partners in the research project ROBUKOM. T3 - ZIB-Report - 13-77 KW - Combinatorial Optimization, Robust Optimization, Multiband Robustness, Network Design Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-44093 SN - 1438-0064 ER -