TY - GEN A1 - Ambellan, Felix A1 - Hanik, Martin A1 - von Tycowicz, Christoph T1 - Morphomatics: Geometric morphometrics in non-Euclidean shape spaces N2 - Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates. KW - shape analysis KW - geometric statistics KW - geometric morphometrics Y1 - 2021 U6 - https://doi.org/10.12752/8544 N1 - https://morphomatics.github.io/ ER - TY - GEN A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes N2 - We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements. T3 - ZIB-Report - 13-38 KW - digitally reconstructed radiographs KW - volume rendering KW - mesh deformation KW - statistical shape and intensity models KW - image registration KW - GPU acceleration Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41896 SN - 1438-0064 ER - TY - GEN A1 - Costa, Marta A1 - Manton, James D. A1 - Ostrovsky, Aaron D. A1 - Prohaska, Steffen A1 - Jefferis, Gregory S.X.E. T1 - NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family databases N2 - Neural circuit mapping is generating datasets of 10,000s of labeled neurons. New computational tools are needed to search and organize these data. We present NBLAST, a sensitive and rapid algorithm, for measuring pairwise neuronal similarity. NBLAST considers both position and local geometry, decomposing neurons into short segments; matched segments are scored using a probabilistic scoring matrix defined by statistics of matches and non-matches. We validated NBLAST on a published dataset of 16,129 single Drosophila neurons. NBLAST can distinguish neuronal types down to the finest level (single identified neurons) without a priori information. Cluster analysis of extensively studied neuronal classes identified new types and unreported topographical features. Fully automated clustering organized the validation dataset into 1052 clusters, many of which map onto previously described neuronal types. NBLAST supports additional query types including searching neurons against transgene expression patterns. Finally we show that NBLAST is effective with data from other invertebrates and zebrafish. T3 - ZIB-Report - 16-34 KW - neuroinformatics KW - NBLAST KW - neuron similarity KW - cell type KW - clustering Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59672 SN - 1438-0064 ER - TY - GEN A1 - Wiebel, Alexander A1 - Vos, Frans M. A1 - Hege, Hans-Christian T1 - Perception-Oriented Picking of Structures in Direct Volumetric Renderings N2 - Radiologists from all application areas are trained to read slice-based visualizations of 3D medical image data. Despite the numerous examples of sophisticated three-dimensional renderings, especially all variants of direct volume rendering, such methods are often considered not very useful by radiologists who prefer slice-based visualization. Just recently there have been attempts to bridge this gap between 2D and 3D renderings. These attempts include specialized techniques for volume picking that result in repositioning slices. In this paper, we present a new volume picking technique that, in contrast to previous work, does not require pre-segmented data or metadata. The positions picked by our method are solely based on the data itself, the transfer function and, most importantly, on the way the volumetric rendering is perceived by viewers. To demonstrate the usefulness of the proposed method we apply it for automatically repositioning slices in an abdominal MRI scan, a data set from a flow simulation and a number of other volumetric scalar fields. Furthermore we discuss how the method can be implemented in combination with various different volumetric rendering techniques. T3 - ZIB-Report - 11-45 KW - DVR KW - picking KW - pointing KW - direct volume rendering Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14343 SN - 1438-0064 ER - TY - GEN A1 - Clasen, Malte A1 - Paar, Philip A1 - Prohaska, Steffen T1 - Level of Detail for Trees Using Clustered Ellipsoids N2 - We present a level of detail method for trees based on ellipsoids and lines. We leverage the Expectation Maximization algorithm with a Gaussian Mixture Model to create a hierarchy of high-quality leaf clusterings, while the branches are simplified using agglomerative bottom-up clustering to preserve the connectivity. The simplification runs in a preprocessing step and requires no human interaction. For a fly by over and through a scene of 10k trees, our method renders on average at 40 ms/frame, up to 6 times faster than billboard clouds with comparable artifacts. T3 - ZIB-Report - 11-41 KW - level of detail KW - rendering KW - natural scene KW - Gaussian mixture model Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14251 SN - 1438-0064 ER - TY - GEN A1 - Kaplan, Bernhard A1 - Laufer, Jan A1 - Prohaska, Steffen A1 - Buchmann, Jens T1 - Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography N2 - The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distributions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo models of the light transport are computationally expensive, but provide accurate fluence distributions predictions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar detection geometry. The combination of the optical and acoustic models is shown to account for limited-view artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the tissue phantom was estimated using a coordinate descent parameter search based on the comparison between measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 % compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood oxygenation from experimental data. T3 - ZIB-Report - 17-04 KW - quantitative photoacoustic tomography KW - model-based inversion KW - oxygen saturation KW - chromophore concentration KW - photoacoustic imaging KW - Monte Carlo methods for light transport KW - boundary conditions KW - coordinate search Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62318 SN - 1438-0064 ER - TY - GEN A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. T3 - ZIB-Report - 17-02 KW - unfolding, papyri, computed tomography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61826 SN - 1438-0064 ER - TY - GEN A1 - Dercksen, Vincent J. A1 - Hege, Hans-Christian A1 - Oberlaender, Marcel T1 - The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology N2 - Neuroanatomical analysis, such as classification of cell types, depends on reliable reconstruction of large numbers of complete 3D dendrite and axon morphologies. At present, the majority of neuron reconstructions are obtained from preparations in a single tissue slice in vitro, thus suffering from cut off dendrites and, more dramatically, cut off axons. In general, axons can innervate volumes of several cubic millimeters and may reach path lengths of tens of centimeters. Thus, their complete reconstruction requires in vivo labeling, histological sectioning and imaging of large fields of view. Unfortunately, anisotropic background conditions across such large tissue volumes, as well as faintly labeled thin neurites, result in incomplete or erroneous automated tracings and even lead experts to make annotation errors during manual reconstructions. Consequently, tracing reliability renders the major bottleneck for reconstructing complete 3D neuron morphologies. Here, we present a novel set of tools, integrated into a software environment named ‘Filament Editor’, for creating reliable neuron tracings from sparsely labeled in vivo datasets. The Filament Editor allows for simultaneous visualization of complex neuronal tracings and image data in a 3D viewer, proof-editing of neuronal tracings, alignment and interconnection across sections, and morphometric analysis in relation to 3D anatomical reference structures. We illustrate the functionality of the Filament Editor on the example of in vivo labeled axons and demonstrate that for the exemplary dataset the final tracing results after proof-editing are independent of the expertise of the human operator. T3 - ZIB-Report - 13-75 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-43157 SN - 1438-0064 ER - TY - GEN A1 - Weber, Britta A1 - Tranfield, Erin M. A1 - Höög, Johanna L. A1 - Baum, Daniel A1 - Antony, Claude A1 - Hyman, Tony A1 - Verbavatz, Jean-Marc A1 - Prohaska, Steffen T1 - Automated stitching of microtubule centerlines across serial electron tomograms N2 - Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. T3 - ZIB-Report - 14-41 KW - electron tomography KW - microtubules KW - serial sectioning KW - image analysis KW - geometry reconstruction KW - image and geometry alignment KW - point correspondence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52958 SN - 1438-0064 ER - TY - GEN A1 - Paskin, Martha A1 - Baum, Daniel A1 - Dean, Mason N. A1 - von Tycowicz, Christoph T1 - A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks -- Source Code and Data N2 - Source code and novel dataset of basking shark head skeletons facilitating the reproduction of the results presented in 'A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks' - ECCV 2022. Y1 - 2022 U6 - https://doi.org/10.12752/8730 ER - TY - GEN A1 - Özel, M. Neset A1 - Kulkarni, Abhishek A1 - Hasan, Amr A1 - Brummer, Josephine A1 - Moldenhauer, Marian A1 - Daumann, Ilsa-Maria A1 - Wolfenberg, Heike A1 - Dercksen, Vincent J. A1 - Kiral, F. Ridvan A1 - Weiser, Martin A1 - Prohaska, Steffen A1 - von Kleist, Max A1 - Hiesinger, Peter Robin T1 - Serial synapse formation through filopodial competition for synaptic seeding factors N2 - Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses. T3 - ZIB-Report - 19-45 KW - filopodia KW - growth cone dynamics KW - brain wiring KW - 2-photon microscopy KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74397 SN - 1438-0064 ER -