TY - GEN A1 - Shinano, Yuji T1 - UG - Ubiquity Generator Framework v0.9.1 N2 - UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. For MIP solving, ParaSCIP and FiberSCIP are well debugged and should be stable. For MINLP solving, they are relatively stable, but not as thoroughly debugged. This release version should handle branch-and-cut approaches where subproblems are defined by variable bounds and also by constrains for ug[SCIP,*] ParaSCIP and FiberSCIP). Therefore, problem classes other than MIP or MINLP can be handled, but they have not been tested yet. v0.9.1: Update orbitope cip files. KW - parallelization framework KW - branch-and-bound parallelization KW - integer optimization Y1 - 2020 U6 - https://doi.org/10.12752/8508 ER - TY - GEN A1 - Shinano, Yuji A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - FiberSCIP - A shared memory parallelization of SCIP N2 - Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated. T3 - ZIB-Report - 13-55 KW - parallel KW - branch-and-bound KW - deterministic parallelism KW - constraint integer programming KW - mixed integer programming KW - mixed integer nonlinear programming KW - SCIP KW - MIP KW - MINLP Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42595 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji T1 - The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound N2 - Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG. T3 - ZIB-Report - 17-60 KW - Parallelization, Branch-and-bound, Mixed Integer Programming, UG, ParaSCIP, FiberSCIP, ParaXpress, FiberXpress, SCIP-Jack Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65545 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji T1 - UG - Ubiquity Generator Framework v1.0.0beta N2 - UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. v1.0.0: new documentation and cmake, generalization of ug framework, implementation of selfsplitrampup for fiber- and parascip, better memory and time limit handling. KW - parallelization framework KW - branch-and-bound parallelization KW - integer optimization Y1 - 2021 U6 - https://doi.org/10.12752/8521 ER - TY - GEN A1 - Munguia, Lluis-Miquel A1 - Oxberry, Geoffrey A1 - Rajan, Deepak A1 - Shinano, Yuji T1 - Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs N2 - PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores. T3 - ZIB-Report - 17-58 KW - PIPS-SBB, UG, Parallel Branch and Bound Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65517 SN - 1438-0064 IS - ZIB-Report 17-58 ER -