TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Kunt, Tim A1 - Katamish, Bassel A1 - Vanaret, Charlie A1 - Sasanpour, Shima A1 - Clarner, Jan-Patrick A1 - Koch, Thorsten T1 - Developing heuristic solution techniques for large-scale unit commitment models N2 - Shifting towards renewable energy sources and reducing carbon emissions necessitate sophisticated energy system planning, optimization, and extension. Energy systems optimization models (ESOMs) often form the basis for political and operational decision-making. ESOMs are frequently formulated as linear (LPs) and mixed-integer linear (MIP) problems. MIPs allow continuous and discrete decision variables. Consequently, they are substantially more expressive than LPs but also more challenging to solve. The ever-growing size and complexity of ESOMs take a toll on the computational time of state-of-the-art commercial solvers. Indeed, for large-scale ESOMs, solving the LP relaxation -- the basis of modern MIP solution algorithms -- can be very costly. These time requirements can render ESOM MIPs impractical for real-world applications. This article considers a set of large-scale decarbonization-focused unit commitment models with expansion decisions based on the REMix framework (up to 83 million variables and 900,000 discrete decision variables). For these particular instances, the solution to the LP relaxation and the MIP optimum lie close. Based on this observation, we investigate the application of relaxation-enforced neighborhood search (RENS), machine learning guided rounding, and a fix-and-propagate (FP) heuristic as a standalone solution method. Our approach generated feasible solutions 20 to 100 times faster than GUROBI, achieving comparable solution quality with primal-dual gaps as low as 1% and up to 35%. This enabled us to solve numerous scenarios without lowering the quality of our models. For some instances that Gurobi could not solve within two days, our FP method provided feasible solutions in under one hour. T3 - ZIB-Report - 25-03 KW - Energy system optimization models KW - Unit commitment KW - Mixed-integer programming KW - Large-scale optimization KW - Primal heuristics Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-99555 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores N2 - Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 20-16 KW - Mixed Integer Programming, Parallel processing, Node merging, Racing, ParaSCIP, Ubiquity Generator Framework, MIPLIB Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78393 SN - 1438-0064 ER -