TY - GEN A1 - Shinano, Yuji T1 - The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound N2 - Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG. T3 - ZIB-Report - 17-60 KW - Parallelization, Branch-and-bound, Mixed Integer Programming, UG, ParaSCIP, FiberSCIP, ParaXpress, FiberXpress, SCIP-Jack Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65545 SN - 1438-0064 ER - TY - GEN A1 - Weber, Britta A1 - Tranfield, Erin M. A1 - Höög, Johanna L. A1 - Baum, Daniel A1 - Antony, Claude A1 - Hyman, Tony A1 - Verbavatz, Jean-Marc A1 - Prohaska, Steffen T1 - Automated stitching of microtubule centerlines across serial electron tomograms N2 - Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. T3 - ZIB-Report - 14-41 KW - electron tomography KW - microtubules KW - serial sectioning KW - image analysis KW - geometry reconstruction KW - image and geometry alignment KW - point correspondence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-52958 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Wende, Florian A1 - Steinke, Thomas T1 - Swendsen-Wang Multi-Cluster Algorithm for the 2D/3D Ising Model on Xeon Phi and GPU N2 - Simulations of the critical Ising model by means of local update algorithms suffer from critical slowing down. One way to partially compensate for the influence of this phenomenon on the runtime of simulations is using increasingly faster and parallel computer hardware. Another approach is using algorithms that do not suffer from critical slowing down, such as cluster algorithms. This paper reports on the Swendsen-Wang multi-cluster algorithm on Intel Xeon Phi coprocessor 5110P, Nvidia Tesla M2090 GPU, and x86 multi-core CPU. We present shared memory versions of the said algorithm for the simulation of the two- and three-dimensional Ising model. We use a combination of local cluster search and global label reduction by means of atomic hardware primitives. Further, we describe an MPI version of the algorithm on Xeon Phi and CPU, respectively. Significant performance improvements over known im plementations of the Swendsen-Wang algorithm are demonstrated. T3 - ZIB-Report - 13-44 KW - Swendsen-Wang Multi-Cluster Algorithm KW - Ising Model KW - Xeon Phi KW - GPGPU KW - Connected Component Labeling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42187 SN - 1438-0064 ER - TY - GEN A1 - Hosoda, Junko A1 - Maher, Stephen J. A1 - Shinano, Yuji A1 - Villumsen, Jonas Christoffer T1 - A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network N2 - Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems. T3 - ZIB-Report - 23-02 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89700 SN - 1438-0064 ER - TY - GEN A1 - Munguia, Lluis-Miquel A1 - Oxberry, Geoffrey A1 - Rajan, Deepak A1 - Shinano, Yuji T1 - Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs N2 - PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores. T3 - ZIB-Report - 17-58 KW - PIPS-SBB, UG, Parallel Branch and Bound Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65517 SN - 1438-0064 IS - ZIB-Report 17-58 ER - TY - GEN A1 - Griewank, Andreas A1 - Streubel, Tom A1 - Lehmann, Lutz A1 - Hasenfelder, Richard A1 - Radons, Manuel T1 - Piecewise linear secant approximation via Algorithmic Piecewise Differentiation N2 - It is shown how piecewise differentiable functions \(F: R^n → R^m\) that are defined by evaluation programs can be approximated locally by a piecewise linear model based on a pair of sample points x̌ and x̂. We show that the discrepancy between function and model at any point x is of the bilinear order O(||x − x̌|| ||x − x̂||). This is a little surprising since x ∈ R^n may vary over the whole Euclidean space, and we utilize only two function samples F̌ = F(x̌) and F̂ = F(x̂), as well as the intermediates computed during their evaluation. As an application of the piecewise linearization procedure we devise a generalized Newton’s method based on successive piecewise linearization and prove for it sufficient conditions for convergence and convergence rates equaling those of semismooth Newton. We conclude with the derivation of formulas for the numerically stable implementation of the aforedeveloped piecewise linearization methods. T3 - ZIB-Report - 16-54 KW - Automatic differentiation KW - Computational graph KW - Lipschitz continuity KW - Generalized Hermite interpolation KW - ADOL-C Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61642 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Reisch, Julian T1 - Parameterized Complexity of Periodic Timetabling N2 - Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-15 KW - Parameterized complexity KW - Periodic timetabling KW - Treewidth KW - Branchwidth KW - Carvingwidth KW - Periodic Event Scheduling Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78314 SN - 1438-0064 ER - TY - GEN A1 - Özel, M. Neset A1 - Kulkarni, Abhishek A1 - Hasan, Amr A1 - Brummer, Josephine A1 - Moldenhauer, Marian A1 - Daumann, Ilsa-Maria A1 - Wolfenberg, Heike A1 - Dercksen, Vincent J. A1 - Kiral, F. Ridvan A1 - Weiser, Martin A1 - Prohaska, Steffen A1 - von Kleist, Max A1 - Hiesinger, Peter Robin T1 - Serial synapse formation through filopodial competition for synaptic seeding factors N2 - Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses. T3 - ZIB-Report - 19-45 KW - filopodia KW - growth cone dynamics KW - brain wiring KW - 2-photon microscopy KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74397 SN - 1438-0064 ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER -