TY - GEN A1 - Deuflhard, Peter T1 - Adaptive Pseudo-transient Continuation for Nonlinear Steady State Problems N2 - Pseudo--transient continuation methods are quite popular for the numerical solution of steady state problems, typically in PDEs. They are based on an embedding into a time dependent initial value problem. In the presence of dynamical invariants the Jacobian matrix of the nonlinear equation system is bound to be singular. The paper presents a convergence analysis which takes this property into account -- in contrast to known approaches. On the basis of the new analysis adaptive algorithms are suggested in detail. These include a variant with Jacobian approximations as well as inexact pseudo--transient continuation, both of which play an important role in discretized PDEs. Numerical experiments are left to future work. T3 - ZIB-Report - 02-14 KW - pseudo--transient continuation KW - linearly implicit KW - Euler discretization KW - stiff integration KW - contractivity of ordinary differential equations KW - lar Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6814 ER - TY - GEN A1 - Weiser, Martin A1 - Schiela, Anton A1 - Deuflhard, Peter T1 - Asymptotic Mesh Independence of Newton's Method Revisited N2 - The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems. T3 - ZIB-Report - 03-13 KW - mesh independence KW - nonlinear partial differential equations KW - Newton method KW - finite element method KW - collocation method Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7352 ER -