TY - GEN A1 - Fackeldey, Konstantin T1 - Coupling Meshbased and Meshfree Methods by a Transfer Operator Approach N2 - In contrast to the well known meshbased methods like the finite element method, meshfree methods do not rely on a mesh. However besides their great applicability, meshfree methods are rather time consuming. Thus, it seems favorable to combine both methods, by using meshfree methods only in a small part of the domain, where a mesh is disadvantageous, and a meshbased method for the rest of the domain. We motivate, that this coupling between the two simulation techniques can be considered as saddle point problem and show the stability of this coupling. Thereby a novel transfer operator is introduced, which interacts in the transition zone, where both methods coexist. T3 - ZIB-Report - 10-12 KW - Gitterlose Methoden KW - inf-sup-Bedingung KW - Kopplung KW - meshfree KW - meshbased KW - inf-sup-Condition Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11755 SN - 1438-0064 ER - TY - GEN A1 - Weiser, Martin A1 - Scacchi, Simone T1 - Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation N2 - We investigate spectral deferred correction (SDC) methods for time stepping and their interplay with spatio-temporal adaptivity, applied to the solution of the cardiac electro-mechanical coupling model. This model consists of the Monodomain equations, a reaction-diffusion system modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical model describing the contraction and relaxation of the cardiac muscle. The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because it exhibits very different spatial and temporal scales. Therefore, spatio-temporal adaptivity is a promising approach to reduce the computational complexity. SDC methods are simple iterative methods for solving collocation systems. We exploit their flexibility for combining them in various ways with spatio-temporal adaptivity. The accuracy and computational complexity of the resulting methods are studied on some numerical examples. T3 - ZIB-Report - 14-22 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50695 SN - 1438-0064 ER -