TY - THES A1 - Schütte, Christof T1 - Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules N2 - The function of many important biomolecules comes from their dynamic properties and their ability to switch between different {\em conformations}. In a conformation, the large scale geometric structure of the molecule is understood to be conserved, whereas on smaller scales the system may well rotate, oscillate or fluctuate. In a recent article [J. Comp. Phys., 151,1 (1999)], the present author and coworkers demonstrated that (a) conformations can be understood as almost invariant sets of some Markov chain being defined via the Hamiltonian system governing the molecular dynamics and that (b) these sets can efficiently be computed via eigenvectors of the corresponding Markov operator. The persent manuscript reviews the mathematical modelling steps behind the novel concept, includes a rigorous analytical justification of this approach and especially of the numerical details of the algorithm, and illustrates its performance when applied to realistic molecular systems. T3 - ZIB-Report - SC-99-18 KW - biochemical conformation KW - almost invariant set KW - Markov chain KW - Hamiltonian system KW - Markov operator KW - quasi-compact operator KW - Perron root KW - Perron- Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-4063 ER - TY - GEN A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Markov Control Processes with Rare State Observation: Theory and Application to Treatment Scheduling in HIV-1 N2 - Markov Decision Processes (MDP) or Partially Observable MDPs (POMDP) are used for modelling situations in which the evolution of a process is partly random and partly controllable. These MDP theories allow for computing the optimal control policy for processes that can continuously or frequently be observed, even if only partially. However, they cannot be applied if state observation is very costly and therefore rare (in time). We present a novel MDP theory for rare, costly observations and derive the corresponding Bellman equation. In the new theory, state information can be derived for a particular cost after certain, rather long time intervals. The resulting information costs enter into the total cost and thus into the optimization criterion. This approach applies to many real world problems, particularly in the medical context, where the medical condition is examined rather rarely because examination costs are high. At the same time, the approach allows for efficient numerical realization. We demonstrate the usefulness of the novel theory by determining, from the national economic perspective, optimal therapeutic policies for the treatment of the human immunodefficiency virus (HIV) in resource-rich and resource-poor settings. Based on the developed theory and models, we discover that available drugs may not be utilized efficiently in resource-poor settings due to exorbitant diagnostic costs. T3 - ZIB-Report - 13-34 KW - information costs KW - hidden state KW - bellmann equation KW - optimal therapeutic policies KW - diagnostic frequency KW - resource-poor KW - resource-rich Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41955 SN - 1438-0064 ER - TY - GEN A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - The spatiotemporal master equation: approximation of reaction-diffusion dynamics via Markov state modeling N2 - Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest. We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented. T3 - ZIB-Report - 16-60 KW - reaction-diffusion KW - stochastic chemical kinetics KW - chemical master equation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60999 SN - 1438-0064 ER -