TY - GEN A1 - Heinz, Stefan A1 - Beck, J. Christopher T1 - Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling N2 - Despite the success of constraint programming (CP) for scheduling, the much wider penetration of mixed integer programming (MIP) technology into business applications means that many practical scheduling problems are being addressed with MIP, at least as an initial approach. Furthermore, there has been impressive and well-documented improvements in the power of generic MIP solvers over the past decade. We empirically demonstrate that on an existing set of resource allocation and scheduling problems standard MIP and CP models are now competitive with the state-of-the-art manual decomposition approach. Motivated by this result, we formulate two tightly coupled hybrid models based on constraint integer programming (CIP) and demonstrate that these models, which embody advances in CP and MIP, are able to out-perform the CP, MIP, and decomposition models. We conclude that both MIP and CIP are technologies that should be considered along with CP for solving scheduling problems. T3 - ZIB-Report - 12-05 KW - constraint integer programming KW - constraint programming KW - cumulative constraint KW - mixed integer programming KW - optional activities Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14660 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Vredeveld, Tjark T1 - Stochastic dominance analysis of Online Bin Coloring algorithms N2 - This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic picture than competitive analysis and explains the behavior observed in simulations. T3 - ZIB-Report - 12-42 KW - online algorithms, stochastic dominance, algorithm analysis, Markov chains Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16502 SN - 1438-0064 ER -