TY - GEN A1 - Rambau, Jörg T1 - Triangulierungen von Punktmengen und Polyedern N2 - Dieser Report wurde im Sommersemester 2000 an der TU Berlin in einer Spezialvorlesung über Triangulierungen von Punktmengen und Polyedern als Skriptum verwendet. Nach einem motivierenden Kapitel werden grundlegende Begriffe und Konstruktionen in der Theorie der Triangulierungen von Punktmengen und Polyedern vorgestellt. Danach werden als weiterführende Themen reguläre Triangulierungen, Sekundärpolytope, bistellare Operationen, höhere Stasheff-Tamari-Halbordnungen und Triangulierungen mit wenigen bzw. gar keinen Flips behandelt. Ein Kapitel über Enumeration und Optimierung beschließt die Zusammenstellung. T3 - ZIB-Report - 00-46 KW - point configuration KW - triangulation KW - polytope KW - polyhedron KW - Gale diagram KW - secondary polytope KW - cyclic polytope KW - graph of all triangulations KW - conn Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6145 ER - TY - GEN A1 - Grötschel, Martin A1 - Henk, Martin T1 - On the Representation of Polyhedra by Polynomial Inequalities N2 - A beautiful result of Bröcker and Scheiderer on the stability index of basic closed semi-algebraic sets implies, as a very special case, that every $d$-dimensional polyhedron admits a representation as the set of solutions of at most $d(d+1)/2$ polynomial inequalities. Even in this polyhedral case, however, no constructive proof is known, even if the quadratic upper bound is replaced by any bound depending only on the dimension. Here we give, for simple polytopes, an explicit construction of polynomials describing such a polytope. The number of used polynomials is exponential in the dimension, but in the 2- and 3-dimensional case we get the expected number $d(d+1)/2$. T3 - ZIB-Report - 02-15 KW - polyhedra and polytopes KW - semialgebraic sets KW - polyhedral combinatorics KW - polynomial inequalities Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6826 ER - TY - GEN A1 - Grötschel, Martin T1 - Cardinality Homogeneous Set Systems, Cycles in Matroids, and Associated Polytopes N2 - A subset ${\cal C}$ of the power set of a finite set $E$ is called cardinality homogeneous if, whenever ${\cal C}$ contains some set $F$, ${\cal C}$ contains all subsets of $E$ of cardinality $|F|$. Examples of such set systems ${\cal C}$ are the sets of circuits and the sets of cycles of uniform matroids and the sets of all even or of all odd cardinality subsets of $E$. With each cardinality homogeneous set system ${\cal C}$, we associate the polytope $P({\cal C})$, the convex hull of the incidence vectors of all sets in ${\cal C}$, and provide a complete and nonredundant linear description of $P({\cal C})$. We show that a greedy algorithm optimizes any linear function over $P({\cal C})$, give an explicit optimum solution of the dual linear program, and provide a polynomial time separation algorithm for the class of polytopes of type $P({\cal C})$. T3 - ZIB-Report - 02-19 KW - Cycles in Matroids KW - cardinality homogeneous set systems KW - polytopes KW - greedy algorithm KW - polyhedral combinatorics Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6868 ER - TY - GEN A1 - Bosse, Hartwig A1 - Grötschel, Martin A1 - Henk, Martin T1 - Polynomial Inequalities Representing Polyhedra N2 - Our main result is that every $n$-dimensional polytope can be described by at most $2n-1$ polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an $n$-dimensional pointed polyhedral cone we prove the bound $2n-2$ and for arbitrary polyhedra we get a constructible representation by $2n$ polynomial inequalities. T3 - ZIB-Report - 04-53 KW - polyhedra and polytopes KW - semi-algebraic sets KW - polyhedral combinatorics KW - polynomial inequalities KW - stability index Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8284 ER - TY - GEN A1 - Bosse, Hartwig A1 - Grötschel, Martin A1 - Henk, Martin T1 - Polynomial Inequalities Representing Polyhedra N2 - Our main result is that every n-dimensional polytope can be described by at most (2n-1) polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n-2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities. T3 - ZIB-Report - 03-25 KW - polyhedra and polytopes KW - semi-algebraic sets KW - polyhedral combinatorics KW - polynomial inequalities KW - stability index Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7473 ER -