TY - JOUR A1 - Akbari Shandiz, Mohsen A1 - Boulos, Paul A1 - Sævarsson, Stefan A1 - Ramm, Heiko A1 - Fu, Chun Kit A1 - Miller, Stephen A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Changes in Knee Shape and Geometry Resulting from Total Knee Arthroplasty JF - Journal of Engineering in Medicine N2 - Changes in knee shape and geometry resulting from total knee arthroplasty can affect patients in numerous important ways: pain, function, stability, range of motion, and kinematics. Quantitative data concerning these changes have not been previously available, to our knowledge, yet are essential to understand individual experiences of total knee arthroplasty and thereby improve outcomes for all patients. The limiting factor has been the challenge of accurately measuring these changes. Our study objective was to develop a conceptual framework and analysis method to investigate changes in knee shape and geometry, and prospectively apply it to a sample total knee arthroplasty population. Using clinically available computed tomography and radiography imaging systems, the three-dimensional knee shape and geometry of nine patients (eight varus and one valgus) were compared before and after total knee arthroplasty. All patients had largely good outcomes after their total knee arthroplasty. Knee shape changed both visually and numerically. On average, the distal condyles were slightly higher medially and lower laterally (range: +4.5 mm to −4.4 mm), the posterior condyles extended farther out medially but not laterally (range: +1.8 to −6.4 mm), patellofemoral distance increased throughout flexion by 1.8–3.5 mm, and patellar thickness alone increased by 2.9 mm (range: 0.7–5.2 mm). External femoral rotation differed preop and postop. Joint line distance, taking cartilage into account, changed by +0.7 to −1.5 mm on average throughout flexion. Important differences in shape and geometry were seen between pre-total knee arthroplasty and post-total knee arthroplasty knees. While this is qualitatively known, this is the first study to report it quantitatively, an important precursor to identifying the reasons for the poor outcome of some patients. Using the developed protocol and visualization techniques to compare patients with good versus poor clinical outcomes could lead to changes in implant design, implant selection, component positioning, and surgical technique. Recommendations based on this sample population are provided. Intraoperative and postoperative feedback could ultimately improve patient satisfaction. Y1 - 2018 UR - http://journals.sagepub.com/eprint/ZVgNrNESA9EjIcaFWSjb/full U6 - https://doi.org/10.1177/0954411917743274 VL - 232 IS - 1 SP - 67 EP - 79 ER - TY - JOUR A1 - Saevarsson, Stefan A1 - Sharma, Gulshan A1 - Amiri, Shahram A1 - Montgomery, Sigrun A1 - Ramm, Heiko A1 - Lichti, Derek A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Radiological method for measuring patellofemoral tracking and tibiofemoral kinematics before and after total knee replacement JF - Bone and Joint Research Y1 - 2012 UR - http://www.bjr.boneandjoint.org.uk/content/1/10/263.short U6 - https://doi.org/10.1302/2046-3758.110.2000117 VL - 1 IS - 10 SP - 263 EP - 271 ER - TY - GEN A1 - Sharma, Gulshan A1 - Ho, Karen A1 - Saevarsson, Stefan A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Knee Pose and Geometry Pre- and Post-Total Knee Arthroplasty Using Computed Tomography T2 - 58th Annual Meeting of the Orthopaedic Research Society (ORS) Y1 - 2012 CY - San Francisco, CA ER - TY - GEN A1 - Sharma, Gulshan A1 - Saevarsson, Stefan A1 - Amiri, Shahram A1 - Montgomery, Sigrun A1 - Ramm, Heiko A1 - Lichti, Derek A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Sequential-Biplane Radiography for Measuring Pre and Post Total Knee Arthroplasty Kinematics T2 - 58th Annual Meeting of the Orthopaedic Research Society (ORS) Y1 - 2012 CY - San Francisco, CA ER - TY - CHAP A1 - Stefan, Saevarsson A1 - Gulshan, Sharma A1 - Sigrun, Montgomery A1 - Karen, Ho A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Hutchison, Carol A1 - Jason, Werle A1 - Carolyn, Anglin T1 - Kinematic Comparison Between Gender Specific and Traditional Femoral Implants T2 - 67th Canadian Orthopaedic Association (COA) Annual Meeting Y1 - 2012 ER - TY - JOUR A1 - Ho, Karen A1 - Saevarsson, Stefan A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Sharma, Gulshan A1 - Rex, Erica A1 - Amiri, Shahram A1 - Wu, Barnabas A1 - Leumann, Andre A1 - Anglin, Carolyn T1 - Computed tomography analysis of knee pose and geometry before and after total knee arthroplasty JF - Journal of biomechanics Y1 - 2012 UR - http://www.ncbi.nlm.nih.gov/pubmed/22796002 U6 - https://doi.org/10.1016/j.jbiomech.2012.06.004 VL - 45 IS - 13 SP - 2215 EP - 21 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Goubergrits, Leonid A1 - Heppt, Werner A1 - Bessler, Stefan A1 - Zachow, Stefan T1 - Evaluation of the Intranasal Flow Field through Computational Fluid Dynamics (CFD) JF - Journal of Facial and Plastic Surgery Y1 - 2013 UR - https://www.thieme-connect.de/DOI/DOI?10.1055/s-0033-1341591 U6 - https://doi.org/10.1055/s-0033-1341591 VL - 29 IS - 2 SP - 93 EP - 98 PB - Thieme ER - TY - JOUR A1 - Saevarsson, Stefan A1 - Sharma, Gulshan A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Hutchison, Carol A1 - Werle, Jason A1 - Montgomery, Sigrun A1 - Romeo, Carolina A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Kinematic Differences Between Gender Specific And Traditional Knee Implants JF - The Journal of Arthroplasty Y1 - 2013 U6 - https://doi.org/10.1016/j.arth.2013.01.021 VL - 28 IS - 9 SP - 1543 EP - 1550 ER - TY - THES A1 - Zachow, Stefan T1 - Computergestützte 3D Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung T1 - Computer assisted 3D osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue arrangement N2 - In der Arbeit wird die computergestützte Planung von chirurgisch gesetzten Knochenfrakturen bzw. Knochenschnitten (sogenannten Osteotomien) an dreidimensionalen, computergrafischen Schädelmodellen, sowie die Umpositionierung separierter knöcherner Segmente im Kontext der rekonstruktiven MKG-Chirurgie behandelt. Durch die 3D Modellierung und Visualisierung anatomischer Strukturen, sowie der 3D Osteotomie- und Umstellungsplanung unter Einbeziehung der resultierenden Weichgewebedeformation wird den Chirurgen ein Werkzeug an die Hand gegeben, mit dem eine Therapieplanung am Computer durchgeführt und diese in Hinblick auf Funktion und Ästhetik bewertet werden kann. Unterschiedliche Strategien können dabei erprobt und in ihrer Auswirkung erfasst werden. Dazu wird ein methodischer Ansatz vorgestellt, der zum einen die chirurgische Planung im Vergleich zu existierenden Ansätzen deutlich verbessert und zum anderen eine robuste Weichgewebeprognose, durch den Einsatz geeigneter Planungsmodelle und eines physikalisch basierten Weichgewebemodells unter Nutzung numerischer Lösungsverfahren in die Planung integriert. Die Visualisierung der Planungsergebnisse erlaubt sowohl eine anschauliche und überzeugende, präoperative Patientenaufklärung, als auch die Demonstration möglicher Vorgehensweisen und deren Auswirkungen für die chirurgische Ausbildung. Ferner ergänzen die Planungsdaten die Falldokumentation und liefern einen Beitrag zur Qualitätssicherung. Die Arbeit ist in sieben Kapitel gegliedert und wie folgt strukturiert: Zuerst wird die medizinische Aufgabenstellung bei der chirurgischen Rekonstruktion von Knochenfehlbildungen und -fehlstellungen in der kraniofazialen Chirurgie sowie die daraus resultierenden Anforderungen an die Therapieplanung beschrieben. Anschließend folgt ein umfassender Überblick über entsprechende Vorarbeiten zur computergestützten Planung knochenverlagernder Operationen und eine kritische Bestandsaufnahme der noch vorhandenen Defizite. Nach der Vorstellung des eigenen Planungsansatzes wird die Generierung individueller, qualitativ hochwertiger 3D Planungsmodelle aus tomografischen Bilddaten beschrieben, die den Anforderungen an eine intuitive, 3D Planung von Umstellungsosteotomien entsprechen und eine Simulation der daraus resultierenden Weichgewebedeformation mittels der Finite-Elemente Methode (FEM) ermöglichen. Die Methoden der 3D Schnittplanung an computergrafischen Modellen werden analysiert und eine 3D Osteotomieplanung an polygonalen Schädelmodellen entwickelt, die es ermöglicht, intuitiv durch Definition von Schnittlinien am 3D Knochenmodell, eine den chirurgischen Anforderungen entsprechende Schnittplanung unter Berücksichtigung von Risikostrukturen durchzuführen. Separierte Knochensegmente lassen sich im Anschluss interaktiv umpositionieren und die resultierende Gesamtanordnung hinsichtlich einer funktionellen Rehabilitation bewerten. Aufgrund des in dieser Arbeit gewählten, physikalisch basierten Modellierungsansatzes kann unter Berücksichtigung des gesamten Weichgewebevolumens aus der Knochenverlagerung direkt die resultierende Gesichtsform berechnet werden. Dies wird anhand von 13 exemplarischen Fallstudien anschaulich demonstriert, wobei die Prognosequalität mittels postoperativer Fotografien und postoperativer CT-Daten überprüft und belegt wird. Die Arbeit wird mit einem Ausblick auf erweiterte Modellierungsansätze und einem Konzept für eine integrierte, klinisch einsetzbare Planungsumgebung abgeschlossen. N2 - In cranio-maxillofacial surgery, physicians are often faced with skeletal malformations that require complex bone relocations. Especially in severe cases of congenital dysgnathia (misalignment of upper and lower jaw) or hemifacial microsomia (asymmetric bone and tissue development), where multiple bone segments are to be mobilized and relocated simultaneously and in relation to each other, careful preoperative planning is mandatory. At present in clinical routine not all possible strategies can be planned and assessed with regard to functional rehabilitation. Moreover, the aesthetic outcome, i.e. the postoperative facial appearance, can only be estimated by a surgeon's experience and hardly communicated to the patient. On this account, a preoperative planning of complex osteotomies with bone relocations on a computerized model of a patient's head, including a reliable three-dimensional prediction and visualization of the post-surgical facial appearance is a highly appreciated possibility cranio-maxillofacial surgeons are longing for. This work, being performed at Zuse Institute Berlin (ZIB), addresses such a computer based 3D~surgery planning. A processing pipeline has been established and a simulation environment has been developed on basis of the software Amira, enabling a surgeon to perform bone cuts and bone rearrangements in an intuitive manner on virtual patient models. In addition, a prediction of the patients' postoperative appearance according to the relocated bone can be simulated and visualized realistically. For a meaningful planning of surgical procedures, anatomically correct patient models providing all relevant details are reconstructed from tomographic data with high fidelity. These patient models reliably represent bony structures as well as the facial soft tissue. Unstructured volumetric grids of the soft tissue are generated for a fast and efficient numerical solution of partial differential equations, describing tissue deformation on the foundation of 3D elastomechanics. The planning of osteotomies (bone cuts) for the mobilization and relocation of bone segments is performed in accordance to the planning on basis of life size replicas of a patient's skull, i.e. stereolitographic models. Osteotomy lines can be drawn on top of the polygonal planning models using suitable input devices. After evaluation of the consequence of a planned cut with regard to vulnerable inner structures (nerves, teeth etc.) the model is separated accordingly. A relocation of bone segments can be performed unrestrictedly in 3D or restricted to a translation or rotation within arbitrarily chosen planes under consideration of cephalometric guidelines. Bone and tooth collisions can be evaluated for functional analysis or orthodontic treatment planning with possible integration of digitized dental plaster casts. As a result of the preoperative planning, a single transformation matrix, encoding translation and rotation, or a sequence of such matrices are provided for each bone segment. Both the osteotomy paths and the transformation parameters can finally be used for intra-operative navigation. In the course of the planning, the relocated positions of bone segments serve as an input for the simulation of the resulting soft tissue deformation. Since bone and surrounding soft tissue share common boundaries that are either fixed or translocated, the resulting configuration of the entire tissue volume can be computed from the given boundary displacements by numerical minimization of the internal strain energy on basis of a biomechanical model, using a finite-element approach. In collaboration with different surgeons and hospitals more than 25 treatments have been accompanied by preoperative planning so far ranging from mandibular and midfacial hypoplasia to complex hemifacial microsomia. 13 of these cases are presented within this work. Simulation results were validated on the basis of photographs as well as of postoperative CT data, showing a good correlation between simulation and postoperative outcome. Further aspects of improving the modeling approach are discussed. It has been demonstrated that 3D~osteotomy planning on virtual patient models can be performed intuitively, and that 3D~tissue deformation for cranio-maxillofacial osteotomy planning can be predicted numerically without using heuristic ratios. It can be stated that by using 3D~planning software, a surgeon gains a better spatial understanding of complex dysplasia, and the 3D~soft tissue prediction gives an additional criterion for the assessment of the planned strategy. It turned out that, especially in complex cases such as hemifacial microsomia or for decisions bet­ween mono- and bimaxillary advancements, a 3D~planning aid is extremely helpful. The conclusion is, that images and animations created within the planning phase provide a valuable planning criterion for maxillofacial surgeons as well as a demonstrative information for patients and their relatives, thus greatly enhancing patient information, as well as surgical education. All data that result from the planning are also important for documentation and quality assurance. 3D osteotomy planning, including soft tissue prediction, likely will become a new paradigm of plastic and reconstructive surgery planning in the future. An assortment of results can be found under: http://www.zib.de/visual/medical/projects KW - MKG-Chirurgie KW - Mund-Kiefer-Gesichtschirurgie KW - Therapieplanung KW - Osteotomie KW - Weichgewebeprädiktion KW - computer assisted surgery KW - therapy planning KW - osteotomy KW - soft tissue prediction KW - CAS Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10432 SN - 3899631986 ER - TY - GEN A1 - Zachow, Stefan A1 - Zilske, Michael A1 - Hege, Hans-Christian T1 - 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing N2 - For medical diagnosis, visualization, and model-based therapy planning three-dimensional geometric reconstructions of individual anatomical structures are often indispensable. Computer-assisted, model-based planning procedures typically cover specific modifications of “virtual anatomy” as well as numeric simulations of associated phenomena, like e.g. mechanical loads, fluid dynamics, or diffusion processes, in order to evaluate a potential therapeutic outcome. Since internal anatomical structures cannot be measured optically or mechanically in vivo, three-dimensional reconstruction of tomographic image data remains the method of choice. In this work the process chain of individual anatomy reconstruction is described which consists of segmentation of medical image data, geometrical reconstruction of all relevant tissue interfaces, up to the generation of geometric approximations (boundary surfaces and volumetric meshes) of three-dimensional anatomy being suited for finite element analysis. All results presented herein are generated with amira ® – a highly interactive software system for 3D data analysis, visualization and geometry reconstruction. T3 - ZIB-Report - 07-41 KW - Medical image segmentation KW - computational geometry KW - virtual anatomy KW - finite element meshes Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10440 SN - 1438-0064 ER -