TY - JOUR A1 - Yokoyama, Ryohei A1 - Kamada, Hiroki A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model JF - Energy N2 - In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2021.120343 VL - 229 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Takeuchi, Kotaro A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method JF - Energy N2 - The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. The methods of clustering periods by the order of time series, by the k-medoids method, and based on an operational strategy are applied for the model reduction. As a case study, the multiobjective optimal design of a gas turbine cogeneration system is investigated by adopting the annual total cost and primary energy consumption as the objective functions, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function, but that the model reduction only by the k-medoids method is effective very limitedly when importance is given to minimizing the second objective function. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2021.120505 VL - 228 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (蓄エネルギー機器を有するシステムへの適用) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Application to Systems With Energy Storage Units) JF - 第40回エネルギー・資源学会研究発表会講演論文集 N2 - Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method with the strategies has been extendedly applied to the optimal design of energy supply systems with storage units. Especially, the method of re- ducing model is extended by aggregating representative days and sampling times differently in consideration of the characteristics of storage units. A case study is conducted on the optimal design of a gas turbine cogeneration system with a thermal storage unit for district energy supply. Through the study, it turns out the hierarchical MILP method is effective to derive the optimal solution as compared with a conventional method. It also turns out that the model reduction with the special time aggregation is effective to shorten the computation time as compared with that without time aggregation in case that the number of candidates for equipment capacities is relatively small. Y1 - 2021 SP - 398 EP - 403 ER -