TY - GEN A1 - Duarte, Belmiro P.M. A1 - Sagnol, Guillaume A1 - Wong, Weng Kee T1 - An algorithm based on Semidefinite Programming for finding minimax optimal designs N2 - An algorithm based on a delayed constraint generation method for solving semi-infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the design space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax $D-$optimal designs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the common A-, E-,G-, I- and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use. T3 - ZIB-Report - 18-01 KW - Cutting plane algorithm KW - Design efficiency KW - Equivalence theorem KW - Model-based optimal design KW - Nonlinear programming Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66249 SN - 1438-0064 ER -