TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias T1 - Prevailing Dust-transport Directions on Comet 67P/Churyumov–Gerasimenko JF - The Astrophysical Journal Letters N2 - Dust transport and deposition behind larger boulders on the comet 67P/Churyumov–Gerasimenko (67P/C–G) have been observed by the Rosetta mission. We present a mechanism for dust-transport vectors based on a homogeneous surface activity model incorporating in detail the topography of 67P/C–G. The combination of gravitation, gas drag, and Coriolis force leads to specific dust transfer pathways, which for higher dust velocities fuel the near-nucleus coma. By distributing dust sources homogeneously across the whole cometary surface, we derive a global dust-transport map of 67P/C–G. The transport vectors are in agreement with the reported wind-tail directions in the Philae descent area. Y1 - 2015 U6 - https://doi.org/10.1088/2041-8205/813/2/L33 VL - 813 IS - 2 SP - L33 ER - TY - JOUR A1 - Rodríguez, Mirta A1 - Kramer, Tobias T1 - Machine Learning of Two-Dimensional Spectroscopic Data JF - Chemical Physics N2 - Two-dimensional electronic spectroscopy has become one of the main experimental tools for analyzing the dynamics of excitonic energy transfer in large molecular complexes. Simplified theoretical models are usually employed to extract model parameters from the experimental spectral data. Here we show that computationally expensive but exact theoretical methods encoded into a neural network can be used to extract model parameters and infer structural information such as dipole orientation from two dimensional electronic spectra (2DES) or reversely, to produce 2DES from model parameters. We propose to use machine learning as a tool to predict unknown parameters in the models underlying recorded spectra and as a way to encode computationally expensive numerical methods into efficient prediction tools. We showcase the use of a trained neural network to efficiently compute disordered averaged spectra and demonstrate that disorder averaging has non-trivial effects for polarization controlled 2DES. Y1 - 2019 U6 - https://doi.org/10.1016/j.chemphys.2019.01.002 VL - 520 SP - 52 EP - 60 ER - TY - JOUR A1 - Heller, Eric J. A1 - Fleischmann, Ragnar A1 - Kramer, Tobias T1 - Branched Flow N2 - In many physical situations involving diverse length scales, waves or rays representing them travel through media characterized by spatially smooth, random, modest refractive index variations. "Primary" diffraction (by individual sub-wavelength features) is absent. Eventually the weak refraction leads to imperfect focal "cusps". Much later, a statistical regime characterized by momentum diffusion is manifested. An important intermediate regime is often overlooked, one that is diffusive only in an ensemble sense. Each realization of the ensemble possesses dramatic ray limit structure that guides the waves (in the same sense that ray optics is used to design lens systems). This structure is a universal phenomenon called branched flow. Many important phenomena develop in this intermediate regime. Here we give examples and some of the physics of this emerging field. Y1 - 2019 ER - TY - JOUR A1 - Hoang, Margaux A1 - Garnier, Philippe A1 - Lasue, Jeremie A1 - Rème, Henri A1 - Capria, Maria Teresa A1 - Altwegg, Kathrin A1 - Läuter, Matthias A1 - Kramer, Tobias A1 - Rubin, Martin T1 - Investigating the Rosetta/RTOF observations of comet 67P/Churyumov-Gerasimenko using a comet nucleus model: Influence of dust mantle and trapped CO JF - Astronomy & Astrophysics N2 - Context. Cometary outgassing is induced by the sublimation of ices and the ejection of dust originating from the nucleus. Therefore measuring the composition and dynamics of the cometary gas provides information concerning the interior composition of the body. Nevertheless, the bulk composition differs from the coma composition, and numerical models are required to simulate the main physical processes induced by the illumination of the icy body. Aims. The objectives of this study are to bring new constraints on the interior composition of the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P) by comparing the results of a thermophysical model applied to the nucleus of 67P and the coma measurements made by the Reflectron-type Time-Of-Flight (RTOF) mass spectrometer. This last is one of the three instruments of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), used during the Rosetta mission. Methods. Using a thermophysical model of the comet nucleus, we studied the evolution of the stratigraphy (position of the sublimation and crystallisation fronts), the temperature of the surface and subsurface, and the dynamics and spatial distribution of the volatiles (H2O, CO2 and CO). We compared them with the in situ measurements from ROSINA/RTOF and an inverse coma model. Results. We observed the evolution of the surface and near surface temperature, and the deepening of sublimation fronts. The thickness of the dust layer covering the surface strongly influences the H2O outgassing but not the more volatiles species. The CO outgassing is highly sensitive to the initial CO/H2O ratio, as well as to the presence of trapped CO in the amorphous ice. Conclusions. The study of the influence of the initial parameters on the computed volatile fluxes and the comparison with ROSINA/RTOF measurements provide a range of values for an initial dust mantle thickness and a range of values for the volatile ratio. These imply the presence of trapped CO. Nevertheless, further studies are required to reproduce the strong change of behaviour observed in RTOF measurements between September 2014 and February 2015. Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201936655 VL - 638 SP - A106 ER - TY - JOUR A1 - Kramer, Tobias A1 - Rodríguez, Mirta T1 - Effect of disorder and polarization sequences on two-dimensional spectra of light harvesting complexes JF - Photosynthesis Research N2 - Two-dimensional electronic spectra (2DES) provide unique ways to track the energy transfer dynamics in light-harvesting complexes. The interpretation of the peaks and structures found in experimentally recorded 2DES is often not straightforward, since several processes are imaged simultaneously. The choice of specific pulse polarization sequences helps to disentangle the sometimes convoluted spectra, but brings along other disturbances. We show by detailed theoretical calculations how 2DES of the Fenna-Matthews-Olson complex are affected by rotational and conformational disorder of the chromophores. Y1 - 2020 U6 - https://doi.org/10.1007/s11120-019-00699-6 VL - 144 SP - 147 EP - 154 ER - TY - JOUR A1 - Läuter, Matthias A1 - Kramer, Tobias A1 - Rubin, Martin A1 - Altwegg, Kathrin T1 - The gas production of 14 species from comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data from 2014-2016 JF - Monthly Notices of the Royal Astronomical Society N2 - The coma of comet 67P/Churyumov-Gerasimenko has been probed by the Rosetta spacecraft and shows a variety of different molecules. The ROSINA COmet Pressure Sensor and the Double Focusing Mass Spectrometer provide in-situ densities for many volatile compounds including the 14 gas species H2O, CO2, CO, H2S, O2, C2H6, CH3OH, H2CO, CH4, NH3, HCN, C2H5OH, OCS, and CS2. We fit the observed densities during the entire comet mission between August 2014 and September 2016 to an inverse coma model. We retrieve surface emissions on a cometary shape with 3996 triangular elements for 50 separated time intervals. For each gas we derive systematic error bounds and report the temporal evolution of the production, peak production, and the time-integrated total production. We discuss the production for the two lobes of the nucleus and for the northern and southern hemispheres. Moreover we provide a comparison of the gas production with the seasonal illumination. Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa2643 VL - 498 IS - 3 SP - 3995 EP - 4004 PB - Monthly Notices of the Royal Astronomical Society ER - TY - JOUR A1 - Kramer, Tobias A1 - Läuter, Matthias A1 - Hviid, Stubbe A1 - Jorda, Laurent A1 - Keller, Horst Uwe A1 - Kührt, Ekkehard T1 - Comet 67P/Churyumov-Gerasimenko rotation changes derived from sublimation induced torques JF - Astronomy & Astrophysics N2 - Context. The change of the rotation period and the orientation of the rotation axis of comet 67P/Churyumov-Gerasimenko (67P/C-G) is deducible from images taken by the scientific imaging instruments on-board the Rosetta mission with high precision. Non gravitational forces are a natural explanation for these data. Aims. We describe observed changes for the orientation of the rotation axis and the rotation period of 67P/C-G. For these changes we give an explanation based on a sublimation model with a best-fit for the surface active fraction (model P). Torque effects of periodically changing gas emissions on the surface are considered. Methods. We solve the equation of state for the angular momentum in the inertial and the body- fixed frames and provide an analytic theory of the rotation changes in terms of Fourier coefficients, generally applicable to periodically forced rigid body dynamics. Results. The torque induced changes of the rotation state constrain the physical properties of the surface, the sublimation rate and the local active fraction of the surface. Conclusions. We determine a distribution of the local surface active fraction in agreement with the rotation properties, period and orientation, of 67P/C-G. The torque movement confirms that the sublimation increases faster than the insolation towards perihelion. The derived relatively uniform activity pattern is discussed in terms of related surface features. Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834349 VL - 630 SP - A3 ER - TY - JOUR A1 - Kramer, Tobias A1 - Läuter, Matthias T1 - Outgassing induced acceleration of comet 67P/Churyumov-Gerasimenko JF - Astronomy & Astrophysics N2 - Cometary activity affects the orbital motion and rotation state due to sublimation induced forces. The availability of precise rotation-axis orientation and position data from the Rosetta mission allows one to accurately determine the outgassing of comet Churyumov-Gerasimenko/67P (67P). We derive the observed non-gravitational acceleration of 67P directly from the Rosetta spacecraft trajectory. From the non-gravitational acceleration we recover the diurnal outgassing variations and study a possible delay of the sublimation response with respect to the peak solar illumination. This allows us to compare the non-gravitational acceleration of 67P with expectations based on empirical models and common assumptions about the sublimation process. We use an iterative orbit refinement and Fourier decomposition of the diurnal activity to derive the outgassing induced non-gravitational acceleration. The uncertainties of the data reduction are established by a sensitivity analysis of an ensemble of best-fit orbits for comet 67P. We find that the Marsden non-gravitational acceleration parameters reproduce part of the non-gravitational acceleration but need to be augmented by an analysis of the nucleus geometry and surface illumination to draw conclusions about the sublimation process on the surface. The non-gravitational acceleration follows closely the subsolar latitude (seasonal illumination), with a small lag angle with respect to local noon around perihelion. The observed minor changes of the rotation axis do not favor forced precession models for the non-gravitational acceleration. In contrast to the sublimation induced torques, the non-gravitational acceleration does not put strong constraints on localized active areas on the nucleus. We find a close agreement of the orbit deduced non-gravitational acceleration and the water production independently derived from Rosetta in-situ measurement. Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935229 VL - 630 SP - A4 ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Reinefeld, Alexander A1 - Rodríguez, Mirta A1 - Zelinskyi, Yaroslav T1 - Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with Distributed Memory HEOM (DM-HEOM) JF - Journal of Computational Chemistry N2 - Time- and frequency resolved optical signals provide insights into the properties of light harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency resolved processes in light harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. Y1 - 2018 U6 - https://doi.org/doi:10.1002/jcc.25354 VL - 39 IS - 22 SP - 1779 EP - 1794 PB - Wiley Periodicals, Inc. ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Reimers, Jeffrey R. A1 - Reinefeld, Alexander A1 - Rodríguez, Mirta A1 - Yin, Shiwei T1 - Energy flow in the Photosystem I supercomplex: comparison of approximative theories with DM-HEOM JF - Chemical Physics N2 - We analyze the exciton dynamics in PhotosystemI from Thermosynechococcus elongatus using the distributed memory implementation of the hierarchical equation of motion (DM-HEOM) for the 96 Chlorophylls in the monomeric unit. The exciton-system parameters are taken from a first principles calculation. A comparison of the exact results with Foerster rates and Markovian approximations allows one to validate the exciton transfer times within the complex and to identify deviations from approximative theories. We show the optical absorption, linear, and circular dichroism spectra obtained with DM-HEOM and compare them to experimental results. Y1 - 2018 U6 - https://doi.org/10.1016/j.chemphys.2018.05.028 VL - 515 SP - 262 EP - 271 PB - Elsevier B.V. ER - TY - JOUR A1 - Läuter, Matthias A1 - Kramer, Tobias A1 - Rubin, Martin A1 - Altwegg, Kathrin T1 - Surface localization of gas sources on comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data JF - Monthly Notices of the Royal Astronomical Society N2 - We reconstruct the temporal evolution of the source distribution for the four major gas species H2O, CO2, CO, and O2 on the surface of comet 67P/Churyumov-Gerasimenko during its 2015 apparition. The analysis applies an inverse coma model and fits to data between August 6th 2014 and September 5th 2016 measured with the Double Focusing Mass Spectrometer (DFMS) of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the COmet Pressure Sensor (COPS). The spatial distribution of gas sources with their temporal variation allows one to construct surface maps for gas emissions and to evaluate integrated productions rates. For all species peak production rates and integrated productions rates per orbit are evaluated separately for the northern and the southern hemisphere. The nine most active emitting areas on the comet’s surface are defined and their correlation to emissions for each of the species is discussed. Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty3103 VL - 483 SP - 852 EP - 861 PB - Monthly Notices of the Royal Astronomical Society ER - TY - JOUR A1 - Läuter, Matthias A1 - Kramer, Tobias A1 - Rubin, Martin A1 - Altwegg, Kathrin T1 - The ice composition close to the surface of comet 67P/Churyumov-Gerasimenko JF - ACS Earth and Space Chemistry N2 - The relation between ice composition in the nucleus of comet 67P/Churyumov-Gerasimenko on the one hand and relative abundances of volatiles in the coma on the other hand is important for the interpretation of density measurements in the environment of the cometary nucleus. For the 2015 apparition, in situ measurements from the two ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) sensors COPS (COmet Pressure Sensor) and DFMS (Double Focusing Mass Spectrometer) determined gas densities at the spacecraft position for the 14 gas species H2O, CO2, CO, H2S, O2, C2H6, CH3OH, H2CO, CH4, NH3, HCN, C2H5OH, OCS, and CS2. We derive the spatial distribution of the gas emissions on the complex shape of the nucleus separately for 50 subintervals of the two-year mission time. The most active patches of gas emission are identified on the surface. We retrieve the relation between solar irradiation and observed emissions from these patches. The emission rates are compared to a minimal thermophysical model to infer the surface active fraction of H2O and CO2. We obtain characteristic differences in the ice composition close to the surface between the two hemispheres with a reduced abundance of CO2 ice on the northern hemisphere (locations with positive latitude). We do not see significant differences for the ice composition on the two lobes of 67P/C-G. Y1 - 2022 U6 - https://doi.org/10.1021/acsearthspacechem.1c00378 VL - 6 IS - 5 SP - 1189 EP - 1203 ER - TY - JOUR A1 - Bürger, Johanna A1 - Hayne, Paul A1 - Gundlach, Bastian A1 - Läuter, Matthias A1 - Kramer, Tobias A1 - Blum, Jürgen T1 - A Microphysical Thermal Model for the Lunar Regolith: Investigating the Latitudinal Dependence of Regolith Properties JF - Journal of Geophysical Research: Planets N2 - The microphysical structure of the lunar regolith provides information on the geologic history of the Moon. We used remote sensing measurements of thermal emission and a thermophysical model to determine the microphysical properties of the lunar regolith. We expand upon previous investigations by developing a microphysical thermal model, which more directly simulates regolith properties, such as grain size and volume filling factor. The modeled temperatures are matched with surface temperatures measured by the Diviner Lunar Radiometer Experiment on board the Lunar Reconnaissance Orbiter. The maria and highlands are investigated separately and characterized in the model by a difference in albedo and grain density. We find similar regolith temperatures for both terrains, which can be well described by similar volume filling factor profiles and mean grain sizes obtained from returned Apollo samples. We also investigate a significantly lower thermal conductivity for highlands, which formally also gives a very good solution, but in a parameter range that is well outside the Apollo data. We then study the latitudinal dependence of regolith properties up to ±80° latitude. When assuming constant regolith properties, we find that a variation of the solar incidence-dependent albedo can reduce the initially observed latitudinal gradient between model and Diviner measurements significantly. A better match between measurements and model can be achieved by a variation in intrinsic regolith properties with a decrease in bulk density with increasing latitude. We find that a variation in grain size alone cannot explain the Diviner measurements at higher latitudes. Y1 - 2024 U6 - https://doi.org/10.1029/2023JE008152 VL - 129 IS - 3 ER -