TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems N2 - This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches. T3 - ZIB-Report - 17-57 KW - Steiner tree KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65439 SN - 1438-0064 ER - TY - GEN A1 - Breuer, Thomas A1 - Bussieck, Michael A1 - Cao, Karl-Kien A1 - Cebulla, Felix A1 - Fiand, Frederik A1 - Gils, Hans Christian A1 - Gleixner, Ambros A1 - Khabi, Dmitry A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Wetzel, Manuel T1 - Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods N2 - Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described. T3 - ZIB-Report - 17-75 KW - energy system models KW - interior-point methods KW - high-performance computing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66183 SN - 1438-0064 ER - TY - JOUR A1 - Berthold, Timo A1 - Hendel, Gregor A1 - Koch, Thorsten T1 - From feasibility to improvement to proof: three phases of solving mixed-integer programs JF - Optimization Methods and Software N2 - Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points. Y1 - 2017 U6 - https://doi.org/10.1080/10556788.2017.1392519 VL - 33 IS - 3 SP - 499 EP - 517 PB - Taylor & Francis ER - TY - JOUR A1 - Koch, Thorsten T1 - The ZIMPL modeling language JF - Optima Y1 - 2017 UR - http://www.mathopt.org/Optima-Issues/optima103.pdf VL - 103 SP - 8 EP - 9 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem N2 - Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced. T3 - ZIB-Report - 17-45 KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64699 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Winkler, Michael A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 3.2 N2 - The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. T3 - ZIB-Report - 15-60 KW - mixed-integer linear and nonlinear programming KW - MIP solver KW - MINLP solver KW - linear programming KW - LP solver KW - simplex method KW - modeling KW - parallel branch-and-bound KW - branch-cut-and-price framework KW - generic column generation KW - Steiner tree solver KW - multi-criteria optimization KW - mixed-integer semidefinite programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57675 SN - 1438-0064 ER - TY - BOOK A1 - Greuel, Martin A1 - Koch, Thorsten A1 - Paule, Peter A1 - Sommese, Andrew T1 - Mathematical Software - ICMS 2016, 5th Int. Conf. Berlin, Germany, July 11-14, 2016, Proceedings T3 - Lecture Notes in Computer Science (LNCS) Y1 - 2016 SN - 978-3-319-42431-6 U6 - https://doi.org/10.1007/978-3-319-42432-3 VL - 9725 PB - Springer ER - TY - GEN A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Kniasew, Dimitri A1 - Schlögel, Dominik A1 - Martin, Alexander A1 - Weninger, Dieter T1 - Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming N2 - SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice. T3 - ZIB-Report - 16-45 KW - supply chain management, supply network optimization, mixed-integer linear programming, primal heuristics, numerical stability, large-scale optimization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61107 SN - 1438-0064 ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores T2 - Proc. of 30th IEEE International Parallel & Distributed Processing Symposium N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. Y1 - 2016 U6 - https://doi.org/10.1109/IPDPS.2016.56 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten A1 - Maher, Stephen J. T1 - Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem N2 - The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack. T3 - ZIB-Report - 16-47 KW - Steiner tree problems KW - reduction techniques KW - prize-collecting Steiner tree problem KW - maximum-weight connected subgraph problem Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60420 SN - 1438-0064 ER -