TY - GEN A1 - Achterberg, Tobias A1 - Koch, Thorsten A1 - Martin, Alexander T1 - MIPLIB 2003 N2 - This paper reports on the fourth version of the Mixed Integer Programming Library. Since ({\sc miplib}) is to provide a concise set of challenging problems, it became necessary to purge instances that became too easy. We present an overview of the 27 new problems and statistical data for all 60 instances. T3 - ZIB-Report - 05-28 KW - Mathematical Programming KW - Mixed Integer Programming KW - IP KW - MIP KW - Optimization KW - Instances Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8625 ER - TY - GEN A1 - Koch, Thorsten T1 - Verteilter Dokumenten-Speicher, Erfahrungen mit den Kluwer-Daten des Friedrich-Althoff-Konsortiums N2 - Dieser Bericht beschreibt die Erfahrungen und Schlussfolgerungen,die im Rahmen der VDS-Vorstudie bei der Speicherung der vom Friedrich-Althoff-Konsortium lizenzierten Zeitschriften des Kluwer-Verlages gewonnen wurden. T3 - ZIB-Report - 03-50 KW - Dokumentenspeicherung KW - Metadaten Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7726 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Wessäly, Roland T1 - Large-scale hierarchical networks: How to compute an optimal architecture? N2 - In this article, we present a mathematical model and an algorithm to support one of the central strategic planning decisions of network operators: How to organize a large number of locations into a hierarchical network? We propose a solution approach that is based on mixed-integer programming and Lagrangian relaxation techniques. As major advantage, our approach provides not only solutions but also worst-case quality guarantees. Real-world scenarios with more than 750 locations have been solved within 30 minutes to less than 1\% off optimality. T3 - ZIB-Report - 04-04 KW - Hierarchical Networks KW - Mixed-Integer Programming KW - Lagrangian Relaxation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7799 ER - TY - GEN A1 - Koch, Thorsten A1 - Wessäly, Roland T1 - Hierarchical Infrastructure Planning in Networks N2 - In this article, strategical infrastructure planning problems in the design of large-scale telecommunication networks are discussed based on experiences from three projects with industrial partners: The access network planning of the German Gigabit-Wissenschaftsnetz (G-WiN) for DFN (Verein zur Förderung eines Deutschen Forschungsnetzes e.V.), the mobile network switching center location planning project for E-Plus Mobilfunk, and the fixed network switching center location planning project for TELEKOM AUSTRIA. We introduce a mathematical model for a hierarchical multi-commodity capacitated facility location problem, present adaptions of this basic model to the specific requirements within the different projects and discuss the individual peculiarities and model decisions made. Eventually, we present and discuss computational results of three associated case studies, illustrating '"how we did the job`` with mathematical methods. T3 - ZIB-Report - 04-42 KW - Facility Location KW - Telecommunication KW - Mixed Integer Programming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8174 ER - TY - GEN A1 - Froyland, Gary A1 - Koch, Thorsten A1 - Megow, Nicole A1 - Duane, Emily A1 - Wren, Howard T1 - Optimizing the Landside Operation of a Container Terminal N2 - This paper concerns the problem of operating a landside container exchange area that is serviced by multiple semi-automated rail mounted gantry cranes (RMGs) that are moving on a single bi-directional traveling lane. Such a facility is being built by Patrick Corporation at the Port Botany terminal in Sydney. The gantry cranes are a scarce resource and handle the bulk of container movements. Thus, they require a sophisticated analysis to achieve near optimal utilization. We present a three stage algorithm to manage the container exchange facility, including the scheduling of cranes, the control of associated short-term container stacking, and the allocation of delivery locations for trucks and other container transporters. The key components of our approach are a time scale decomposition, whereby an integer program controls decisions across a long time horizon to produce a balanced plan that is fed to a series of short time scale online subproblems, and a highly efficient space-time divisioning of short term storage areas. A computational evaluation shows that our heuristic can find effective solutions for the planning problem; on real-world data it yields a solution at most~8\% above a lower bound on optimal RMG utilization. T3 - ZIB-Report - 06-06 KW - Integer Programming KW - Container Terminal KW - Intermediate Storage Area KW - Landside operation KW - Yard crane scheduling KW - Storage space allocation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9004 ER - TY - GEN A1 - Koch, Thorsten T1 - Rapid Mathematical Programming or How to Solve Sudoku Puzzles in a few Seconds N2 - Using the popular puzzle game of Sudoku, this article highlights some of the ideas and topics covered in ZR-04-58. T3 - ZIB-Report - 05-51 KW - Integer Programming KW - Sudoku KW - IP KW - MIP KW - Zimpl KW - Modelling language Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8845 ER - TY - GEN A1 - Achterberg, Tobias A1 - Grötschel, Martin A1 - Koch, Thorsten T1 - Software for Teaching Modeling of Integer Programming Problems N2 - Modern applications of mathematical programming must take into account a multitude of technical details, business demands, and legal requirements. Teaching the mathematical modeling of such issues and their interrelations requires real-world examples that are well beyond the toy sizes that can be tackled with the student editions of most commercial software packages. We present a new tool, which is freely available for academic use including complete source code. It consists of an algebraic modeling language and a linear mixed integer programming solver. The performance and features of the tool are in the range of current state-of-the-art commercial tools, though not in all aspects as good as the best ones. Our tool does allow the execution and analysis of large real-world instances in the classroom and can therefore enhance the teaching of problem solving issues. Teaching experience has been gathered and practical usability was tested in classes at several universities and a two week intensive block course at TU Berlin. The feedback from students and teachers has been very positive. T3 - ZIB-Report - 06-23 KW - Integer Programming KW - Modelling KW - MIP-Solver KW - Algebraic Modelling Languages KW - Teaching Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9176 ER - TY - GEN A1 - Koch, Thorsten A1 - Ceynowa, Klaus A1 - Söllner, Konstanze A1 - Christof, Jürgen A1 - Bertelmann, Roland T1 - DeepGreen – Open Access Transformation Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen für wissenschaftliche Publikationen N2 - Für den geforderten – und von der Deutschen Forschungsgemeinschaft (DFG) geförderten – Open-Access-Transformationsprozess der deutschen, wissenschaftlichen Publikationslandschaft braucht es neue Formen der Zusammenarbeit zwischen Wissenschaft und Verlagen. Bereits seit 2011 wurden mit Unterstützung seitens der DFG in Deutschland die sogenannten Allianz-Lizenzen zwischen Bibliotheken und Verlagen verhandelt, in denen weitreichende Rechte hinsichtlich der Open-Access-Archivierung verankert sind: Autorinnen und Autoren aber auch die sie vertretenden Einrichtungen dürfen Artikel, die in lizenzierten Zeitschriften erschienen sind, ohne oder mit nur kurzer Embargofrist in geeigneten Repositorien ihrer Wahl frei zugänglich machen. Aufbauend auf diese Open-Access-Komponenten zeigt das DFG-geförderte Projekt „DeepGreen“ ein mögliches neues Modell der Zusammenarbeit mit Verlagen auf: DeepGreen setzt auf die automatisierte Verteilung von Artikeldaten von Verlagen an Repositorien und will disziplinübergreifend einen Großteil jener wissenschaftlichen Publikationen aus Fachzeitschriften, die unter lizenzrechtlichen Kontexten frei zugänglich online gehen dürften, auch tatsächlich online abrufbar machen. Erprobte DeepGreen von 2016 bis Ende 2017 prototypisch die Machbarkeit der Zielstellung, will das Projekt in der zweiten Projektphase (2018-2020) den (möglichst stark) automatisierten Workflow gemeinsam mit Verlagen, berechtigten Bibliotheken und anderen Einrichtungen etablieren. Technischer Baustein ist eine zentrale, intermediäre Datenverteilstation, die die automatische und rechtssichere Ablieferung von Metadaten inklusive der Volltexte aus Verlagshand direkt an dazu berechtigte institutionelle Repositorien gewährleistet. Erreicht werden soll ein bundesweiter Service, der auf verbindlichen Absprachen mit Verlagen und Bibliotheken fußt und (zunächst) die Bedingungen der Allianz-Lizenzen umsetzt. Gleichzeitig wird die Übertragbarkeit des DeepGreen-Ansatzes auf weitere Lizenzkontexte (FID-Lizenzen, Konsortiallizenzen, Gold-Open-Access-Vereinbarungen) geprüft. Eine zusätzliche Ausbaustufe stellt die Überlegung zur automatisierten Ablieferung an Fachrepositorien und Forschungsinformationssysteme dar, die ebenfalls geplant wird. Das nationale Projektkonsortium besteht aus den zwei Bibliotheksverbünden Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV) und Bibliotheksverbund Bayern (BVB), zwei Universitätsbibliotheken, der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Technische Universität Berlin (TU Berlin), zusätzlich der Bayerischen Staatsbibliothek (BSB) und einer außeruniversitären Forschungseinrichtung - dem Helmholtz Open Science Koordinationsbüro am Deutschen GeoForschungsZentrum (GFZ). Das Folgeprojekt beginnt am 01. August 2018. Hier vorliegend finden Sie den Projektantrag zum Nachlesen. T3 - ZIB-Report - 18-39 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69612 SN - 1438-0064 ER - TY - GEN A1 - Becker, Pascal-Nicolas A1 - Bertelmann, Roland A1 - Ceynowa, Klaus A1 - Christof, Jürgen A1 - Dierkes, Thomas A1 - Goltz-Fellgiebel, Julia Alexandra A1 - Groß, Matthias A1 - Heidrich, Regina A1 - Höhnow, Tobias A1 - Kassube, Michael A1 - Koch, Thorsten A1 - Kuberek, Monika A1 - Landes, Lilian A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Schobert, Dagmar A1 - Schwab, Oliver A1 - Schwidder, Jens A1 - Söllner, Konstanze A1 - Stoyanova, Tonka A1 - Vierkant, Paul T1 - Questionnaire for effective exchange of bibliographic metadata – current status of publishing houses N2 - The project DeepGreen aims to realise better usage of green open access publication rights with regard to Alliance Licenses in Germany (https://www.nationallizenzen.de/open-access). Together with publishers who offer Alliance Licenses and authorized libraries, the project group intends to develop a prototype of a nearly fully automated workflow that covers the delivery of data from the publishers, including the article full texts, as well as the process of loading data into the institutional repositories of licensees. Further information about the project can be found within ZIB-Report 15-58, urn:nbn:de:0297-zib-56799. In order to become acquainted with publishers’ processes for exchanging documents and metadata, the project group developed a questionnaire for an online survey. The publishing of this questionnaire is intended to demonstrate relevant aspects of the issue (e. g. methods of data exchange, protocols and interfaces) and to foster reuse of valuable questionnaire elements. The XML-file can be reused as a template, the PDF-file reproduces the original survey layout. KW - Open Access KW - Open Access KW - Questionnaire Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60419 N1 - This work is in the public domain: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. https://creativecommons.org/publicdomain/zero/1.0/ ER - TY - GEN A1 - Becker, Pascal-Nicolas A1 - Bertelmann, Roland A1 - Ceynowa, Klaus A1 - Christof, Jürgen A1 - Dierkes, Thomas A1 - Goltz-Fellgiebel, Julia Alexandra A1 - Groß, Matthias A1 - Heidrich, Regina A1 - Höhnow, Tobias A1 - Kassube, Michael A1 - Koch, Thorsten A1 - Kuberek, Monika A1 - Landes, Lilian A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Schobert, Dagmar A1 - Schwab, Oliver A1 - Schwidder, Jens A1 - Söllner, Konstanze A1 - Stoyanova, Tonka A1 - Vierkant, Paul T1 - DeepGreen – Metadata Schema for the exchange of publications between publishers and open access repositories. Version 1.1. June 2016 N2 - In 2011, important priorities were set to realize green publications in the open access movement in Germany. With financial support from the German Research Foundation (DFG), libraries negotiated Alliance licenses with publishers that guarantee extensive open access rights. Authors of institutions, that have therewith access to licensed journals, can freely publish their articles immediately or after a short embargo period in a repository of their choice. However, authors hesitantly use these open access rights. Also libraries – as managers of institutional and subject based repositories and thus legitimated representatives for the authors – only rarely make use of these rights. The aim of DeepGreen is to make the majority of those publications available online. Together with publishers of the Alliance licenses, the project consortium wants to develop a nearly fully automated workflow that covers both the delivery of data, including the full texts, of the publishers, as well as the data transformation to the necessary import formats and the loading process into the repositories. An intermediate “publication router” will serve as a distribution platform. The DeepGreen metadata schema contains metadata properties describing a wide range of deliverable bibliographic metadata from the Alliance license publishers (most common standards are JATS and CrossRef XML) as well as its compliance with technical, quality and metadata standards of the repositories. The schema includes required metadata elements and optional properties providing additional information.The metadata schema is aligned to the OCLC repository best practices (“Best Practices for CONTENTdm and other OAI-PMH compliant repositories: creating sharable metadata”, URL: http://www.oclc.org/content/dam/support/wcdigitalcollectiongateway/MetadataBestPractices.pdf). The current version of the schema is subject to changes as the functional requirements and workflow practices are evolving during the project experiences and prototype production. T3 - ZIB-Report - 16-32 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59580 SN - 1438-0064 N1 - This work is in the public domain: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. https://creativecommons.org/publicdomain/zero/1.0/ ER - TY - GEN A1 - Behrens, Kathrin A1 - Bertelmann, Roland A1 - Boltze, Julia A1 - Ceynowa, Klaus A1 - Christof, Jürgen A1 - Dierkes, Thomas A1 - Goltz-Fellgiebel, Julia Alexandra A1 - Groß, Matthias A1 - Hammerl, Michaela A1 - Haoua, Marsa A1 - Heermann, Petra A1 - Hoffmann, Cornelia A1 - Höhnow, Tobias A1 - Koch, Thorsten A1 - Kuberek, Monika A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Schwidder, Jens A1 - Söllner, Konstanze A1 - Staub, Hedda A1 - Wannick, Eike T1 - DeepGreen - Open Access Transformation: Eine Handreichung für institutionelle Repositorien BT - Version 1.0 N2 - Mit dem DFG-geförderten Projekt DeepGreen soll eine automatisierte, rechtssichere Lösung entwickelt werden, um Artikeldaten von wissenschaftlichen Verlagen abzuholen und anschließend, nach Ablauf etwaiger lizenzrechtlicher Embargofristen, an berechtigte Repositorien zu verteilen und somit in den Open Access zu überführen. Dabei liegt der Fokus auf den DFG-geförderten und überregional verhandelten Allianz-Lizenzen, mit spezieller Open-Access-Komponente. Die vorliegende Handreichung richtet sich speziell an die Betreiber institutioneller Repositorien und stellt Empfehlungen und einen Workflow bereit, um eine erfolgreiche Veröffentlichung, der durch die DeepGreen-Datendrehscheibe zugeordneten Artikel, zu ermöglichen. Die Handreichung basiert auf den bisherigen Erfahrungen der DeepGreen-Projektbeteiligten. T3 - ZIB-Report - 19-31 KW - Open Access KW - Open-Access-Transformation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74438 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Martin, Alexander T1 - Solving Steiner Tree Problems in Graphs to Optimality N2 - In this paper we present the implementation of a branch-and-cut algorithm for solving Steiner tree problems in graphs. Our algorithm is based on an integer programming formulation for directed graphs and comprises preprocessing, separation algorithms and primal heuristics. We are able to solve all problem instances discussed in literature to optimality, including one to our knowledge not yet solved problem. We also report on our computational experiences with some very large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered in a newly introduced library called {\em SteinLib} that is accessible via World Wide Web. T3 - ZIB-Report - SC-96-42 Y1 - 1996 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-2526 ER - TY - GEN A1 - Pedersen, Jaap A1 - Lindner, Niels A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Comparing Branching Rules for the Quota Steiner Tree Problem with Interference N2 - Branching decisions play a crucial role in branch-and-bound algorithms for solving combinatorial optimization problems. In this paper, we investigate several branching rules applied to the Quota Steiner Tree Problem with Interference (QSTPI). The Quota Steiner Tree Problem (QSTP) generalizes the classical Steiner Tree Problem (STP) in graphs by seeking a minimum-cost tree that connects a subset of profit-associated vertices to meet a given quota. The extended version, QSTPI, introduces interference among vertices: Selecting certain vertices simultaneously reduces their individual contributions to the overall profit. This problem arises, for example, in positioning and connecting wind turbines, where turbines possibly shadow other turbines, reducing their energy yield. While exact solvers for standard STP-related problems often rely heavily on reduction techniques and cutting-plane methods – rarely generating large branch-and-bound trees – experiments reveal that large instances of QSTPI require significantly more branching to compute provably optimal solutions. In contrast to branching on variables, we utilize the combinatorial structure of the QSTPI by branching on the graph’s vertices. We adapt classical and problem-specific branching rules and present a comprehensive computational study comparing the effectiveness of these branching strategies. T3 - ZIB-Report - 25-16 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101250 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Koch, Thorsten T1 - A GPU accelerated variant of Schroeppel-Shamir's algorithm for solving the market split problem N2 - The market split problem (MSP), introduced by Cornuéjols and Dawande (1998), is a challenging binary optimization problem that performs poorly on state-of-the-art linear programming-based branch-and-cut solvers. We present a novel algorithm for solving the feasibility version of this problem, derived from Schroeppel–Shamir's algorithm for the one-dimensional subset sum problem. Our approach is based on exhaustively enumerating one-dimensional solutions of MSP and utilizing GPUs to evaluate candidate solutions across the entire problem. The resulting hybrid CPU-GPU implementation efficiently solves instances with up to 10 constraints and 90 variables. We demonstrate the algorithm's performance on benchmark problems, solving instances of size (9, 80) in less than fifteen minutes and (10, 90) in up to one day. T3 - ZIB-Report - 25-10 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-100554 SN - 1438-0064 ER - TY - GEN A1 - Riedmüller, Stephanie A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Warm-starting Strategies in Scalarization Methods for Multi-Objective Optimization N2 - We explore how warm-starting strategies can be integrated into scalarization-based approaches for multi-objective optimization in (mixed) integer linear programming. Scalarization methods remain widely used classical techniques to compute Pareto-optimal solutions in applied settings. They are favored due to their algorithmic simplicity and broad applicability across continuous and integer programs with an arbitrary number of objectives. While warm-starting has been applied in this context before, a systematic methodology and analysis remain lacking. We address this gap by providing a theoretical characterization of warm-starting within scalarization methods, focusing on the sequencing of subproblems. However, optimizing the order of subproblems to maximize warm-start efficiency may conflict with alternative criteria, such as early identification of infeasible regions. We quantify these trade-offs through an extensive computational study. T3 - ZIB-Report - 25-12 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101073 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - On the exact solution of prize-collecting Steiner tree problems T3 - ZIB-Report - 20-11 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78174 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - A Massively Parallel Interior-Point-Method for Arrowhead Linear Programs N2 - In practice, non-specialized interior point algorithms often cannot utilize the massively parallel compute resources offered by modern many- and multi-core compute platforms. However, efficient distributed solution techniques are required, especially for large-scale linear programs. This article describes a new decomposition technique for systems of linear equations implemented in the parallel interior-point solver PIPS-IPM++. The algorithm exploits a matrix structure commonly found in optimization problems: a doubly-bordered block-diagonal or arrowhead structure. This structure is preserved in the linear KKT systems solved during each iteration of the interior-point method. We present a hierarchical Schur complement decomposition that distributes and solves the linear optimization problem; it is designed for high-performance architectures and scales well with the availability of additional computing resources. The decomposition approach uses the border constraints’ locality to decouple the factorization process. Our approach is motivated by large-scale unit-commitment problems. We demonstrate the performance of our method on a set of mid-to large-scale instances, some of which have more than 10^9 nonzeros in their constraint matrix. T3 - ZIB-Report - 24-13 KW - direct methods for linear systems KW - mathematical programming KW - parallel computation KW - linear programming KW - large-scale problems KW - interior-point methods Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-98829 SN - 1438-0064 ER - TY - GEN A1 - Yueksel-Erguen, Inci A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Mathematical optimization based flow scenario generation for operational analysis of European gas transport networks based on open data N2 - The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential. Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment. Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization. T3 - ZIB-Report - 24-03 Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-95789 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Berthold, Timo A1 - Pedersen, Jaap A1 - Vanaret, Charlie T1 - Progress in Mathematical Programming Solvers from 2001 to 2020 N2 - This study investigates the progress made in LP and MILP solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time. T3 - ZIB-Report - 21-20 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82779 SN - 1438-0064 ER - TY - GEN A1 - Pedersen, Jaap A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid; Technical Report N2 - In the transition towards a pure hydrogen infrastructure, utilizing the existing natural gas infrastructure is a necessity. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length. T3 - ZIB-Report - 21-21 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82838 SN - 1438-0064 ER - TY - GEN A1 - Chen, Ying A1 - Koch, Thorsten A1 - Xu, Xiaofei T1 - Regularized partially functional autoregressive model with application to high-resolution natural gas forecasting in Germany N2 - We propose a partially functional autoregressive model with exogenous variables (pFAR) to describe the dynamic evolution of the serially correlated functional data. It provides a unit� ed framework to model both the temporal dependence on multiple lagged functional covariates and the causal relation with ultrahigh-dimensional exogenous scalar covariates. Estimation is conducted under a two-layer sparsity assumption, where only a few groups and elements are supposed to be active, yet without knowing their number and location in advance. We establish asymptotic properties of the estimator and investigate its unite sample performance along with simulation studies. We demonstrate the application of pFAR with the high-resolution natural gas flows in Germany, where the pFAR model provides insightful interpretation as well as good out-of-sample forecast accuracy. T3 - ZIB-Report - 19-34 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74880 SN - 1438-0064 ER - TY - GEN A1 - Hoang, Nam-Dung A1 - Koch, Thorsten T1 - Steiner Tree Packing Revisited N2 - The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other problems, where there have been tremendous advances in practical problem solving, STPP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for computing optimal solutions. In this paper we review some “classical” STPP instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by emplyoing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimimality. T3 - ZIB-Report - 12-02 KW - Steiner tree packing KW - Integer Programming KW - grid graphs Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14625 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann, Kai A1 - Hennings, Felix A1 - Lenz, Ralf A1 - Gotzes, Uwe A1 - Heinecke, Nina A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - Optimal Operation of Transient Gas Transport Networks T3 - ZIB-Report - 19-23 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73639 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Petkovic, Milena A1 - Chen, Ying A1 - Gamrath, Inken A1 - Gotzes, Uwe A1 - Hadjidimitriou, Natalia Selini A1 - Zittel, Janina A1 - Xu, Xiaofei A1 - Koch, Thorsten T1 - A Hybrid Approach for High Precision Prediction of Gas Flows N2 - About 20% of the German energy demand is supplied by natural gas. Ad- ditionally, for about twice the amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by so-called transmissions system operators or TSOs. The number one priority of the TSOs is to ensure security of supply. However, the TSOs have no knowledge of the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high- pressure transport network of about 12.000 km length. Since flexibility and security of supply is of utmost importance to the German Energy Transition (“Energiewende”) especially with the introduction of peak-load gas power stations, being able to predict in- and out-flow of the network is of great importance. In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary nodes of a transport network. The new method employs optimized feature minimization and selection. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve robust high quality forecasts on real world data for different types of network nodes. Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation T3 - ZIB-Report - 19-26 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73525 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Hobbie, Hannes A1 - Schönheit, David A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Möst, Dominik T1 - A massively parallel interior-point solver for linear energy system models with block structure N2 - Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. Special effort has been put into handling large numbers of linking constraints and variables as commonly observed in energy system models. In order to handle this strong linkage, a distributed preconditioning of the Schur complement is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the existing parallel interior-point solver PIPS-IPM. We evaluate the computational performance on energy system models with up to 700 million non-zero entries in the constraint matrix, and with more than 200 million columns and 250 million rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market clearing. It has been widely applied in the literature on energy system analyses during the recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models. T3 - ZIB-Report - 19-41 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74321 SN - 1438-0064 N1 - In the meantime, this report got published as a journal article: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/searchtype/authorsearch/author/Hannes+Hobbie/docId/8191/start/1/rows/10 Please use this journal reference when citing this work. ER - TY - GEN A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. T3 - ZIB-Report - 19-39 KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74084 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Reduction-based exact solution of prize-collecting Steiner tree problems T3 - ZIB-Report - 18-55 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70958 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Cutting Plane Selection with Analytic Centers and Multiregression N2 - Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method. T3 - ZIB-Report - 22-28 KW - cut selection KW - anlalytic center KW - mixed-integer programming Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89065 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Vigerske, Stefan T1 - Comparing MIQCP solvers to a specialised algorithm for mine production scheduling N2 - In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm. T3 - ZIB-Report - 09-32 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11507 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Fujisawa, Katsuki A1 - Koch, Thorsten A1 - Nakao, Masahiro A1 - Shinano, Yuji T1 - Computing single-source shortest paths on graphs with over 8 trillion edges N2 - This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants. T3 - ZIB-Report - 22-22 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88180 SN - 1438-0064 ER - TY - GEN A1 - Vu, Thi Huong A1 - Litzel, Ida A1 - Koch, Thorsten T1 - Similarity-based fuzzy clustering scientific articles: potentials and challenges from mathematical and computational perspectives N2 - Fuzzy clustering, which allows an article to belong to multiple clusters with soft membership degrees, plays a vital role in analyzing publication data. This problem can be formulated as a constrained optimization model, where the goal is to minimize the discrepancy between the similarity observed from data and the similarity derived from a predicted distribution. While this approach benefits from leveraging state-of-the-art optimization algorithms, tailoring them to work with real, massive databases like OpenAlex or Web of Science -- containing about 70 million articles and a billion citations -- poses significant challenges. We analyze potentials and challenges of the approach from both mathematical and computational perspectives. Among other things, second-order optimality conditions are established, providing new theoretical insights, and practical solution methods are proposed by exploiting the problem’s structure. Specifically, we accelerate the gradient projection method using GPU-based parallel computing to efficiently handle large-scale data. T3 - ZIB-Report - 25-09 KW - bibliometrics KW - fuzzy clustering KW - large-scale publication data KW - non-convex optimization KW - second-order optimality KW - gradient projection methods KW - Nesterov acceleration KW - GPU-based parallel computing Y1 - 2025 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/10036 ER - TY - GEN A1 - Vu, Thi Huong A1 - Koch, Thorsten T1 - Clustering scientific publications: lessons learned through experiments with a real citation network N2 - Clustering scientific publications helps uncover research structures within bibliographic databases. Graph-based methods such as spectral, Louvain, and Leiden clustering are commonly used due to their ability to model citation networks. However, their effectiveness can diminish when applied to real-world data. This study evaluates these clustering algorithms on a citation graph of about 700,000 articles and 4.6 million citations from the Web of Science. The results show that while scalable methods like Louvain and Leiden perform efficiently, their default settings often yield poor partitioning. Meaningful outcomes require careful parameter tuning, especially for large networks with uneven structures, including a dense core and loosely connected papers. These findings highlight practical lessons about the challenges of large-scale data, method selection and tuning based on specific structures of bibliometric clustering tasks. T3 - ZIB-Report - 25-05 KW - graph clustering KW - citation networks KW - Web of Science KW - bibliometric analysis KW - unsupervised learning Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-100418 ER - TY - GEN A1 - Pedersen, Jaap A1 - Lindner, Niels A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Integrated Wind Farm Design: Optimizing Turbine Placement and Cable Routing with Wake Effects N2 - An accelerated deployment of renewable energy sources is crucial for a successful transformation of the current energy system, with wind energy playing a key role in this transition. This study addresses the integrated wind farm layout and cable routing problem, a challenging nonlinear optimization problem. We model this problem as an extended version of the Quota Steiner Tree Problem (QSTP), optimizing turbine placement and network connectivity simultaneously to meet specified expansion targets. Our proposed approach accounts for the wake effect - a region of reduced wind speed induced by each installed turbine - and enforces minimum spacing between turbines. We introduce an exact solution framework in terms of the novel Quota Steiner Tree Problem with interference (QSTPI). By leveraging an interference-based splitting strategy, we develop an advanced solver capable of tackling large-scale problem instances. The presented approach outperforms generic state-of-the-art mixed integer programming solvers on our dataset by up to two orders of magnitude. Moreover, we demonstrate that our integrated method significantly reduces the costs in contrast to a sequential approach. Thus, we provide a planning tool that enhances existing planning methodologies for supporting a faster and cost-efficient expansion of wind energy. T3 - ZIB-Report - 25-01 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-99218 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Koch, Thorsten T1 - Low-precision first-order method-based fix-and-propagate heuristics for large-scale mixed-integer linear optimization N2 - We investigate the use of low-precision first-order methods (FOMs) within a fix-and-propagate (FP) framework for solving mixed-integer programming problems (MIPs). FOMs, using only matrix-vector products instead of matrix factorizations, are well suited for GPU acceleration and have recently gained more attention for their application to large-scale linear programming problems (LPs). We employ PDLP, a variant of the Primal-Dual Hybrid Gradient (PDHG) method specialized to LP problems, to solve the LP-relaxation of our MIPs to low accuracy. This solution is used to motivate fixings within our fix-and-propagate framework. We implemented four different FP variants using primal and dual LP solution information. We evaluate the performance of our heuristics on MIPLIB 2017, showcasing that the low-accuracy LP solution produced by the FOM does not lead to a loss in quality of the FP heuristic solutions when compared to a high-accuracy interior-point method LP solution. Further, we use our FP framework to produce high-accuracy solutions for large-scale (up to 243 million non-zeros and 8 million decision variables) unit-commitment energy-system optimization models created with the modeling framework REMix. For the largest problems, we can generate solutions with under 2% primal-dual gap in less than 4 hours, whereas commercial solvers cannot generate feasible solutions within two days of runtime. This study represents the first successful application of FOMs in large-scale mixed-integer optimization, demonstrating their efficacy and establishing a foundation for future research in this domain. T3 - ZIB-Report - 25-04 KW - Integer programming KW - Large scale optimization KW - Linear Programming KW - Primal heuristics KW - OR in energy Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-99612 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Kunt, Tim A1 - Katamish, Bassel A1 - Vanaret, Charlie A1 - Sasanpour, Shima A1 - Clarner, Jan-Patrick A1 - Koch, Thorsten T1 - Developing heuristic solution techniques for large-scale unit commitment models N2 - Shifting towards renewable energy sources and reducing carbon emissions necessitate sophisticated energy system planning, optimization, and extension. Energy systems optimization models (ESOMs) often form the basis for political and operational decision-making. ESOMs are frequently formulated as linear (LPs) and mixed-integer linear (MIP) problems. MIPs allow continuous and discrete decision variables. Consequently, they are substantially more expressive than LPs but also more challenging to solve. The ever-growing size and complexity of ESOMs take a toll on the computational time of state-of-the-art commercial solvers. Indeed, for large-scale ESOMs, solving the LP relaxation -- the basis of modern MIP solution algorithms -- can be very costly. These time requirements can render ESOM MIPs impractical for real-world applications. This article considers a set of large-scale decarbonization-focused unit commitment models with expansion decisions based on the REMix framework (up to 83 million variables and 900,000 discrete decision variables). For these particular instances, the solution to the LP relaxation and the MIP optimum lie close. Based on this observation, we investigate the application of relaxation-enforced neighborhood search (RENS), machine learning guided rounding, and a fix-and-propagate (FP) heuristic as a standalone solution method. Our approach generated feasible solutions 20 to 100 times faster than GUROBI, achieving comparable solution quality with primal-dual gaps as low as 1% and up to 35%. This enabled us to solve numerous scenarios without lowering the quality of our models. For some instances that Gurobi could not solve within two days, our FP method provided feasible solutions in under one hour. T3 - ZIB-Report - 25-03 KW - Energy system optimization models KW - Unit commitment KW - Mixed-integer programming KW - Large-scale optimization KW - Primal heuristics Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-99555 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Branching via Cutting Plane Selection: Improving Hybrid Branching N2 - Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4% decrease in solve time, and an 8% decrease in number of nodes over affected instances of MIPLIB 2017. T3 - ZIB-Report - 23-17 KW - cutting plane selection KW - variable selection KW - mixed-integer programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91120 SN - 1438-0064 ER - TY - GEN A1 - Tjusila, Gennesaret A1 - Besancon, Mathieu A1 - Turner, Mark A1 - Koch, Thorsten T1 - How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem N2 - It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest. T3 - ZIB-Report - 23-15 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-90902 ER - TY - GEN A1 - Prause, Felix A1 - Hoppmann-Baum, Kai A1 - Defourny, Boris A1 - Koch, Thorsten T1 - The Maximum Diversity Assortment Selection Problem N2 - In this paper, we introduce the Maximum Diversity Assortment Selection Problem (MADASS), which is a generalization of the 2-dimensional Cutting Stock Problem (2CSP). Given a set of rectangles and a rectangular container, the goal of 2CSP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. In MADASS, we need to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as minimum or average normalized Hamming-Distance of all assortment pairs. The MADASS Problem was used in the 11th AIMMS-MOPTA Competition in 2019. The methods we describe in this article and the computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2CSP literature. T3 - ZIB-Report - 20-34 KW - Combinatorial Optimization KW - Mixed Integer Programming KW - 2-dim Cutting Stock Problem KW - Maximum Diversity Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81039 SN - 1438-0064 ER - TY - GEN A1 - Anderson, Lovis A1 - Turner, Mark A1 - Koch, Thorsten T1 - Generative deep learning for decision making in gas networks N2 - A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5%. T3 - ZIB-Report - 20-38 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81103 SN - 1438-0064 ER - TY - GEN A1 - Petkovic, Milena A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks N2 - Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21$\%$. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. T3 - ZIB-Report - 21-01 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81221 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann-Baum, Kai A1 - Mexi, Gioni A1 - Burdakov, Oleg A1 - Casselgren, Carl Johan A1 - Koch, Thorsten T1 - Length-Constrained Cycle Partition with an Application to UAV Routing N2 - In this article, we discuss the Length-Constrained Cycle Partition Problem (LCCP). Besides edge weights, the undirected graph in LCCP features an individual critical weight value for each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the length of each cycle is not greater than the critical weight of each of the vertices in the cycle. The goal is to find a feasible partition with the minimum number of cycles. In this article, we discuss theoretical properties, preprocessing techniques, and two mixed-integer programming models (MIP) for LCCP both inspired by formulations for the closely related Travelling Salesperson Problem (TSP). Further, we introduce conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a report on computational experiments conducted on (A)TSPLIB-based instances. As an example, we use a routing problem in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas. T3 - ZIB-Report - 20-30 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-80489 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Implications, conflicts, and reductions for Steiner trees T3 - ZIB-Report - 20-28 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-80039 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann-Baum, Kai A1 - Hennings, Felix A1 - Zittel, Janina A1 - Gotzes, Uwe A1 - Spreckelsen, Eva-Maria A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control N2 - This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364% on average. T3 - ZIB-Report - 20-27 KW - Hydrogen Transport KW - Hydrogen Infrastructure KW - Network Flows KW - Mixed Integer Programming KW - Energiewende Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79901 SN - 1438-0064 ER - TY - GEN A1 - Yueksel-Erguen, Inci A1 - Zittel, Janina A1 - Wang, Ying A1 - Hennings, Felix A1 - Koch, Thorsten T1 - Lessons learned from gas network data preprocessing N2 - The German high-pressure natural gas transport network consists of thousands of interconnected elements spread over more than 120,000 km of pipelines built during the last 100 years. During the last decade, we have spent many person-years to extract consistent data out of the available sources, both public and private. Based on two case studies, we present some of the challenges we encountered. Preparing consistent, high-quality data is surprisingly hard, and the effort necessary can hardly be overestimated. Thus, it is particularly important to decide which strategy regarding data curation to adopt. Which precision of the data is necessary? When is it more efficient to work with data that is just sufficiently correct on average? In the case studies we describe our experiences and the strategies we adopted to deal with the obstacles and to minimize future effort. Finally, we would like to emphasize that well-compiled data sets, publicly available for research purposes, provide the grounds for building innovative algorithmic solutions to the challenges of the future. T3 - ZIB-Report - 20-13 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78262 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Franz, Henriette A1 - Koch, Thorsten T1 - Optimal Connected Subgraphs: Formulations and Algorithms T3 - ZIB-Report - 20-23 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79094 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores N2 - Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 20-16 KW - Mixed Integer Programming, Parallel processing, Node merging, Racing, ParaSCIP, Ubiquity Generator Framework, MIPLIB Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78393 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Miltenberger, Matthias A1 - Weninger, Dieter T1 - Progress in Presolving for Mixed Integer Programming N2 - Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice. T3 - ZIB-Report - 13-48 KW - mixed-integer programming KW - presolving KW - preprocessing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42530 SN - 1438-0064 ER - TY - GEN A1 - Clarner, Jan-Patrick A1 - Tawfik, Christine A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Network-induced Unit Commitment - A model class for investment and production portfolio planning for multi-energy systems N2 - In light of the energy transition production planning of future decarbonized energy systems lead to very large and complex optimization problems. A widely used modeling paradigm for modeling and solving such problems is mathematical programming. While there are various scientific energy system models and modeling tools, most of them do not provide the necessary level of detail or the modeling flexibility to be applicable for industrial usage. Industrial modeling tools, on the other hand, provide a high level of detail and modeling flexibility. However, those models often exhibit a size and complexity that restricts their scope to a time horizon of several months, severely complicating long-term planning. As a remedy, we propose a model class that is detailed enough for real-world usage but still compact enough for long-term planning. The model class is based on a generalized unit commitment problem on a network with investment decisions. The focus lies on the topological dependency of different energy production and transportation units. T3 - ZIB-Report - 22-16 KW - Multi-energy systems KW - Unit commitment KW - Investment planning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-87607 SN - 1438-0064 ER - TY - GEN A1 - Pedersen, Jaap A1 - Le, Thi Thai A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Optimal discrete pipe sizing for tree-shaped CO2 networks N2 - While energy-intensive industries like the steel industry plan to switch to renewable energy sources, other industries, such as the cement industry, have to rely on carbon capture storage and utilization technologies to reduce the inevitable carbon dioxide (CO2) emissions of their production processes. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is a challenging mixed-integer nonlinear program. Additionally, the behaviour of CO2 is highly sensitive and nonlinear regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modelling including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We show the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany. T3 - ZIB-Report - 22-15 KW - CO2 Transport KW - Network Design KW - Pipeline Sizing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-87574 SN - 1438-0064 ER - TY - JOUR A1 - Chen, Ying A1 - Koch, Thorsten A1 - Zakiyeva, Nazgul A1 - Liu, Kailiang A1 - Xu, Zhitong A1 - Chen, Chun-houh A1 - Nakano, Junji A1 - Honda, Keisuke T1 - Article's Scientific Prestige: Measuring the Impact of Individual Articles in the Web of Science N2 - We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article’s Scientific Prestige (ASP) metric and compared this metric to number of citations (#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to #Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and #Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than #Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference. T3 - ZIB-Report - 22-07 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86380 VL - 17 IS - 1 SP - 101379 ER - TY - GEN A1 - Turner, Mark A1 - Koch, Thorsten A1 - Serrano, Felipe A1 - Winkler, Michael T1 - Adaptive Cut Selection in Mixed-Integer Linear Programming N2 - Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP. T3 - ZIB-Report - 22-04 KW - cut selection KW - mixed-integer linear programming KW - reinforcement learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86055 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - Faster exact solution of sparse MaxCut and QUBO problems T3 - ZIB-Report - 22-02 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85715 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Bastubbe, Michael A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Schubert, Christoph A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Walter, Matthias A1 - Wegscheider, Fabian A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 6.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 18-26 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69361 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Voß, Stefan T1 - SteinLib: An Updated Library on Steiner Tree Problems in Graphs N2 - In this paper we present the {\em SteinLib}, a library of data sets for the Steiner tree problem in graphs. This library extends former libraries on Steiner tree problems by many new interesting and difficult instances, most of them arising from real-world applications. We give a survey on the difficulty of these problem instances by giving references to state-of-the-art software packages that were the first or are currently among the best to solve these instances. T3 - ZIB-Report - 00-37 KW - Steiner Trees KW - Mathematical Programming Testdata Library Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6056 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten T1 - Integer programming approaches to access and backbone IP-network planning N2 - In this article we study the problem of designing a nation-wide communication network. Such networks usually consist of an access layer, a backbone layer, and maybe several intermediate layers. The nodes of each layer must be connected to those of the next layer in a tree-like fashion. The backbone layer has to satisfy certain survivability and routing constraints. Given the node locations, the demands between them, the possible connections and hardware configurations, and various other technical and administrational constraints, the goal is to decide, which node is assigned to which network level, how the nodes are connected, what hardware must be installed, and how traffic is routed in the backbone. Mixed integer linear programming models and solution methods are presented for both the access and the backbone network design problem. The focus is on the design of IP-over-SDH networks, but the access network design model and large parts of the backbone network design models are general and also applicable for other types of communication networks. Results obtained with these methods in the planning of the German research network are presented. T3 - ZIB-Report - 02-41 KW - Network design KW - Traffic enineering KW - Internet routing KW - Mixed-integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7081 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Koch, Thorsten A1 - Koster, Arie M.C.A. A1 - Martin, Alexander A1 - Pfender, Tobias A1 - Wegel, Oliver A1 - Wessäly, Roland T1 - Modelling Feasible Network Configurations for UMTS N2 - A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations. T3 - ZIB-Report - 02-16 KW - UMTS KW - radio interface KW - network planning KW - configuration KW - perfect power control KW - mathematical model KW - mixed integer programming KW - MOMENTUM KW - IST-20 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6837 ER - TY - GEN A1 - Koch, Thorsten T1 - The final NETLIB-LP results N2 - The NETLIB has now served for 18 years as a repository of LP problem instances. From the beginning to the present day there was some uncertainness about the precise values of the optimal solutions. We implemented a program using exact rational arithmetic to compute proofs for the feasibility and optimality of an LP solution. This paper reports the \emph{exact} optimal objective values for all NETLIB problems. T3 - ZIB-Report - 03-05 KW - Linear Programming KW - Simplex KW - Netlib KW - rational arithmetic Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7274 ER - TY - GEN A1 - Achterberg, Tobias A1 - Koch, Thorsten A1 - Martin, Alexander T1 - Branching on History Information N2 - Mixed integer programs ($MIPs$) are commonly solved with branch and bound algorithms based on linear programming. The success and the speed of the algorithm strongly depends on the strategy used to select the branching variables. Today's state-of-the-art strategy is called \emph{pseudocost branching} and uses information of previous branchings to determine the current branching. We propose a modification of \emph{pseudocost branching} which we call \emph{history branching}. This strategy has been implemented in $SIP$, a state-of-the-art $MIP$ solver. We give computational results that show the superiority of the new strategy. T3 - ZIB-Report - 02-32 KW - Mixed Integer Programming KW - Branch-and-Bound KW - Branching Rules KW - Pseudocost Branching Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6990 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Geerdes, Hans-Florian A1 - Junglas, Daniel A1 - Koch, Thorsten A1 - Martin, Alexander T1 - Optimization Methods for UMTS Radio Network Planning N2 - The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results. T3 - ZIB-Report - 03-41 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7637 ER - TY - THES A1 - Koch, Thorsten T1 - Rapid Mathematical Programming N2 - The thesis deals with the implementation and application of out-of-the-box tools in linear and mixed integer programming. It documents the lessons learned and conclusions drawn from five years of implementing, maintaining, extending, and using several computer codes to solve real-life industrial problems. By means of several examples it is demonstrated how to apply algebraic modeling languages to rapidly devise mathematical models of real-world problems. It is shown that today's MIP solvers are capable of solving the resulting mixed integer programs, leading to an approach that delivers results very quickly. Even though, problems are tackled that not long ago required the implementation of specialized branch-and-cut algorithms. In the first part of the thesis the modeling language Zimpl is introduced. Chapter 2 contains a complete description of the language. In the subsequent chapter details of the implementation are described. Both theoretical and practical considerations are discussed. Aspects of software engineering, error prevention, and detection are addressed. In the second part several real-world projects are examined that employed the methodology and the tools developed in the first part. Chapter 4 presents three projects from the telecommunication industry dealing with facility location problems. Chapter 5 characterizes questions that arise in UMTS planning. Problems, models, and solutions are discussed. Special emphasis is put on the dependency of the precision of the input data and the results. Possible reasons for unexpected and undesirable solutions are explained. Finally, the Steiner tree packing problem in graphs, a well-known hard combinatorial problem, is revisited. A formerly known, but not yet used model is applied to combine switchbox wire routing and via minimization. All instances known from the literature are solved by this approach, as are some newly generated bigger problem instances. T3 - ZIB-Report - 04-58 KW - Modelling Languages KW - Mixed Integer Programming KW - Steiner Tree Packing in Graphs KW - Location Planning in Telecommunications KW - UMTS Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8346 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Geerdes, Hans-Florian A1 - Koch, Thorsten A1 - Türke, Ulrich T1 - MOMENTUM Data Scenarios for Radio Network Planning and Simulation (Extended Abstract) N2 - We present publicly available data sets related to research on wireless networks. The scenarios contain a wide range of data and are detailed in all aspects. To our knowledge, this is the most realistic, comprehensive, and detailed \emph{public} data collection on mobile networking. We indicate example uses of this data collection in applications related tu UMTS. T3 - ZIB-Report - 04-07 KW - Radio Network Planning KW - Simulation KW - UMTS KW - Realistic Data KW - XML Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7829 ER - TY - GEN A1 - Achterberg, Tobias A1 - Koch, Thorsten A1 - Martin, Alexander T1 - Branching rules revisited N2 - Mixed integer programs are commonly solved with linear programming based branch-and-bound algorithms. The success of the algorithm strongly depends on the strategy used to select the variable to branch on. We present a new generalization called {\sl reliability branching} of today's state-of-the-art {\sl strong branching} and {\sl pseudocost branching} strategies for linear programming based branch-and-bound algorithms. After reviewing commonly used branching strategies and performing extensive computational studies we compare different parameter settings and show the superiority of our proposed newstrategy. T3 - ZIB-Report - 04-13 KW - Mixed-integer-programming KW - Branch-and-Bound KW - Variable selection KW - Pseudocost-Branching KW - Strong-Branching KW - Reliability-Branching Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7886 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Geerdes, Hans-Florian A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Wessäly, Roland T1 - UMTS Radio Network Evaluation and Optimization beyond Snapshots N2 - This paper is concerned with UMTS radio network design. Our task is to reconfigure antennas and the related cells as to improve network quality. In contrast to second generation GSM networks, \emph{interference} plays a paramount role when designing third generation radio networks. A known compact formulation for assessing the interference characteristics of a radio network as coupling relations between cells based on user snapshots is generalized to statistical average load. This enables us to overcome the notorious difficulties of snapshot-based network optimization approaches. We recall a mixed-integer programming model for the network design problem that is based on user snapshots and contrast it with a new network design model based on the average coupling formulation. Exemplarily focusing on the important problem of optimizing antenna tilts, we give computational results for a fast local search algorithm and the application of a MIP solver to both models. These results demonstrate that our new average-based approaches outperform state-of-the-art snapshot models for UMTS radio network optimization. T3 - ZIB-Report - 04-15 KW - UMTS KW - Network planning KW - Network design KW - Optimization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7903 ER - TY - GEN A1 - Koch, Thorsten A1 - Griebel, Rolf A1 - Söllner, Konstanze A1 - Christof, Jürgen A1 - Bertelmann, Roland T1 - DeepGreen - Entwicklung eines rechtssicheren Workflows zur effizienten Umsetzung der Open-Access-Komponente in den Allianz-Lizenzen für die Wissenschaft N2 - In Deutschland wurden 2011 wichtige Akzente für die Umsetzung des Grünen Wegs der Open-Access-Bewegung gesetzt: Mit finanzieller Unterstützung der Deutschen Forschungsgemeinschaft (DFG) haben Bibliotheken sogenannte Allianz-Lizenzen mit Verlagen verhandelt, in denen weitreichende Rechte hinsichtlich der Open-Access-Archivierung verankert sind. Autorinnen und Autoren zugriffsberechtigter Einrichtungen können ihre Artikel, die in diesen lizenzierten Zeitschriften erschienen sind, ohne oder mit nur kurzer Embargofrist in geeigneten Repositorien ihrer Wahl frei zugänglich machen. Allerdings macht der Kreis berechtigter Autorinnen und Autoren nur sehr zögerlich von seinen Open-Access-Rechten Gebrauch. Auch die Bibliotheken – als Betreiber der Repositorien und damit Vertreter für die berechtigten Autorinnen und Autoren – nutzen dieses Recht nur unzureichend. Mit DeepGreen verfolgen die Antragssteller das Ziel, einen Großteil jener Publikationen, die unter den speziell im DFG-geförderten Kontext verhandelten Bedingungen grün online gehen dürften, auch tatsächlich online abrufbar zu machen. Im Rahmen des Projektes wird prototypisch mit Allianzverlagen und berechtigten Bibliotheken ein möglichst stark automatisierter Workflow entwickelt, in dem rechtssichere Verlagsdaten inklusive der Volltexte abgeliefert und von Repositorien eingespielt werden. Ein technischer Baustein ist dabei ein intermediäres Repositorium, das als Datenverteiler dient. Das nationale Projektkonsortium besteht aus den zwei Bibliotheksverbünden Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV) und Bibliotheksverbund Bayern (BVB), den zwei Universitätsbibliotheken der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Technische Universität Berlin (TU Berlin), zusätzlich die Bayerische Staatsbibliothek (BSB) und eine außeruniversitäre Forschungseinrichtung - das Helmholtz Open Science Koordinationsbüro am Deutschen GeoForschungsZentrum (GFZ). Das Projekt startet zum 01. Januar 2016. Hier vorliegend finden Sie den Projektantrag zum Nachlesen. T3 - ZIB-Report - 15-58 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56799 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten T1 - ZIMPL User Guide N2 - {\sc Zimpl} is a little language to translate the mathematical model of a problem into a linear or (mixed-)integer mathematical program expressed in {\tt lp} or {\tt mps} file format which can be read by a LP or MIP solver. T3 - ZIB-Report - 01-20 KW - LP KW - IP KW - Modelling Language KW - Integer Programming Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6466 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten T1 - Optimierung in der Planung und beim Aufbau des G-WiN N2 - Ende Juni diesen Jahres wurde das Gigabit-Wissenschaftsnetz offiziell gestartet. In der zweijährigen Vorbereitungsphase wurden nicht nur die technischen Möglichkeiten der neuen Übertragungstechniken und Dienste getestet. Es wurden auch verschiedene Fragestellungen zum effizienten Einsatz der verfügbaren Ressourcen für den Betrieb des G-WiN untersucht. In diesem Artikel beschreiben wir, wie das G-WiN zu seiner jetzigen Struktur und Topologie gekommen ist. T3 - ZIB-Report - 00-48 Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6169 ER - TY - GEN A1 - Kaibel, Volker A1 - Koch, Thorsten T1 - Mathematik für den Volkssport N2 - "`Volkssport Sudoku"' titelt der Stern in seiner Ausgabe vom 24. Mai2006. In der Tat traut sich derzeit kaum noch eine Zeitung, ohne Sudoku zu erscheinen. Die Begeisterung am Lösen dieser Zahlenrätsel offenbart eine unvermutete Freude am algorithmischen Arbeiten. Mathematisch kann man Sudokus als lineare diophantische Gleichungssysteme mit Nichtnegativitätsbedingungen formulieren. Solche ganzzahligen linearen Programme sind die wichtigsten Modellierungswerkzeuge in zahlreichen Anwendungsgebieten wie z.B. der Optimierung von Telekommunikations- und Verkehrsnetzen. Moderne Verfahren zur Lösung dieser Optimierungsprobleme sind durch Sudokus allerdings deutlich weniger zu beeindrucken als Zeitungsleser. T3 - ZIB-Report - 06-28 KW - Sudoku KW - Integer Programming KW - General Public Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9225 ER - TY - GEN A1 - Abboud, Nadine A1 - Grötschel, Martin A1 - Koch, Thorsten T1 - Mathematical Methods for Physical Layout of Printed Circuit Boards: An Overview N2 - This article surveys mathematical models and methods used for physical PCB layout, i.e., component placement and wire routing. The main concepts are briefly described together with relevant references. T3 - ZIB-Report - 06-29 KW - PCB Design KW - placement KW - routing Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9231 ER - TY - GEN A1 - Rusch, Beate A1 - Peters-Kottig, Wolfgang A1 - Boltze, Julia A1 - Brandtner, Andreas A1 - Degkwitz, Andreas A1 - Kirsch, Simona A1 - Koch, Thorsten A1 - Lohrum, Stefan A1 - Müller, Anja A1 - Mutter, Moritz A1 - Seeliger, Frank A1 - Stanek, Ursula T1 - KOBV Jahresbericht 2019-2020 N2 - Der aktuelle KOBV-Jahresbericht informiert darüber, was in den Mitgliedsbibliotheken und Partnerprojekten in den letzten beiden Jahren passiert ist und was sich in der Verbundzentrale und in der Bibliothekslandschaft ändert. Die Ausgabe 2019/2020 enthält den Schwerpunktteil »Digitalisierung« mit verschiedenen Perspektiven auf die digitale Arbeitswelt. T3 - KOBV-Jahresbericht - 2019-2020 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82474 SN - 1438-0064 CY - Berlin ER - TY - GEN A1 - Bertelmann, Roland A1 - Koch, Thorsten A1 - Ceynowa, Klaus A1 - Söllner, Konstanze A1 - Christof, Jürgen A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Putnings, Markus A1 - Pampel, Heinz A1 - Kuberek, Monika A1 - Boltze, Julia A1 - Lohrum, Stefan A1 - Retter, Regina A1 - Höllerl, Annika A1 - Faensen, Katja A1 - Steffen, Ronald A1 - Gross, Matthias A1 - Hoffmann, Cornelia A1 - Haoua, Marsa T1 - DeepGreen: Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen für wissenschaftliche Publikationen – Abschlussbericht N2 - DeepGreen wurde vom 01.08.2018 bis zum 30.06.2021 in einer zweiten Projektphase von der Deutschen Forschungsgemeinschaft (DFG) gefördert. DeepGreen unterstützt Bibliotheken als Dienstleister für Hochschulen, außeruniversitäre Forschungseinrichtungen und die dort tätigen Wissenschaftler:innen dabei, Publikationen auf Open-Access-Repositorien frei zugänglich zu machen und fördert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. An der zweiten Projektphase waren der Kooperative Bibliotheksverbund Berlin-Brandenburg, die Bayerische Staatsbibliothek, der Bibliotheksverbund Bayern, die Universitätsbibliotheken der Friedrich-Alexander-Universität Erlangen-Nürnberg und der Technischen Universität Berlin und das Helmholtz Open Science Office beteiligt. In dem Projekt wurde erfolgreich eine technische und organisatorische Lösung zur automatisierten Verteilung von Artikeldaten wissenschaftlicher Verlage an institutionelle und fachliche Repositorien entwickelt. In der zweiten Projektphase lag der Fokus auf der Erprobung der Datendrehscheibe in der Praxis und der Ausweitung auf weitere Datenabnehmer und weitere Verlage. Im Anschluss an die DFG-geförderte Projektlaufzeit ist DeepGreen in einen zweijährigen Pilotbetrieb übergegangen. Ziel des Pilotbetriebs ist es, den Übergang in einen bundesweiten Real-Betrieb vorzubereiten. T3 - ZIB-Report - 21-37 KW - Open Access KW - Repositorien KW - DeepGreen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85420 SN - 1438-0064 ER - TY - GEN A1 - Peters-Kottig, Wolfgang A1 - Brandtner, Andreas A1 - Christof, Jürgen A1 - Hauffe, Yves A1 - Koch, Thorsten A1 - Kuo, Leslie A1 - Krause, Katja A1 - Müller, Anja A1 - Seeliger, Frank A1 - Stanek, Ursula A1 - Stöhr, Elena A1 - Vetter, Danilo A1 - Winkler, Alexander A1 - Zeyns, Andrea A1 - Rusch, Beate T1 - KOBV Jahresbericht 2021-2022 T3 - KOBV-Jahresbericht - 2021-2022 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91162 SN - 0934-5892 VL - 2021-2022 CY - Berlin ER - TY - GEN A1 - Rusch, Beate A1 - Peters-Kottig, Wolfgang A1 - Ceynowa, Klaus A1 - Dinter, Joachim A1 - Dubberke, Ina A1 - Happel, Hans-Gerd A1 - Hilliger, Kirsten A1 - Kitaeva, Xenia A1 - Kleineberg, Michael A1 - Koch, Thorsten A1 - Mc Leod, Shirley A1 - Mutter, Moritz A1 - Müller, Anja A1 - Seeliger, Frank A1 - Segger, Elisabeth A1 - Stanek, Ursula A1 - Wiese, Robert A1 - Wrzesinski, Marcel T1 - KOBV Jahresbericht 2023-2024 T3 - KOBV-Jahresbericht - 2023-2024 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-100440 SN - 0934-5892 VL - 2023-2024 CY - Berlin ER - TY - GEN A1 - Bertelmann, Roland A1 - Boltze, Julia A1 - Ceynowa, Klaus A1 - Christof, Jürgen A1 - Faensen, Katja A1 - Groß, Matthias A1 - Hoffmann, Cornelia A1 - Koch, Thorsten A1 - Kuberek, Monika A1 - Lohrum, Stefan A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Retter, Regina A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Söllner, Konstanze A1 - Steffen, Ronald A1 - Wannick, Eike T1 - DeepGreen: Open-Access-Transformation in der Informationsinfrastruktur – Anforderungen und Empfehlungen, Version 1.0 N2 - DeepGreen ist ein Service, der es teilnehmenden institutionellen Open-Access-Repositorien,Open-Access-Fachrepositorien und Forschungsinformationssystemen erleichtert, für sie relevante Verlagspublikationen in zyklischer Abfolge mithilfe von Schnittstellen Open Access zur Verfügung zu stellen. Die entsprechende Bandbreite an Relationen zwischen den Akteuren, diverse lizenzrechtliche Rahmenbedingungen sowie technische Anforderungen gestalten das Thema komplex. Ziel dieser Handreichung ist es, neben all diesen Themen, die begleitend beleuchtet werden, im Besonderen Empfehlungen für die reibungslose Nutzung der Datenübertragung zu liefern. Außerdem werden mithilfe einer vorangestellten Workflow- Evaluierung Unterschiede und Besonderheiten in den Arbeitsschritten bei institutionellen Open-Access-Repositorien und Open-Access-Fachrepositorien aufgezeigt und ebenfalls mit Empfehlungen angereichert. T3 - ZIB-Report - 21-03 KW - Open Access KW - Zweitveröffentlichung KW - Bibliotheken KW - Verlage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81503 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabó, Jácint T1 - Gas Network Topology Optimization for Upcoming Market Requirements N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. T3 - ZIB-Report - 11-09 KW - Mathematical Optimization KW - Gas Distribution Networks KW - Topology Planning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12348 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Niu, Lingfeng T1 - Experiments with nonlinear extensions to SCIP N2 - This paper describes several experiments to explore the options for solving a class of mixed integer nonlinear programming problems that stem from a real-world mine production planning project. The only type of nonlinear constraints in these problems are bilinear equalities involving continuous variables, which enforce the ratios between elements in mixed material streams. A branch-and-bound algorithm to handle the integer variables has been tried in another project. However, this branch-and-bound algorithm is not effective for handling the nonlinear constraints. Therefore state-of-the-art nonlinear solvers are utilized to solve the resulting nonlinear subproblems in this work. The experiments were carried out using the NEOS server for optimization. After finding that current nonlinear programming solvers seem to lack suitable preprocessing capabilities, we preprocess the instances beforehand and use an heuristic approach to solve the nonlinear subproblems. In the appendix, we explain how to add a polynomial constraint handler that uses IPOPT as embedded nonlinear programming solver for the constraint programming framework SCIP. This is one of the crucial steps for implementing our algorithm in SCIP. We briefly described our approach and give an idea of the work involved. T3 - ZIB-Report - 08-28 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8300 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - ParaSCIP - a parallel extension of SCIP N2 - Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer. T3 - ZIB-Report - 10-27 KW - massive parallization KW - mixed integer programming KW - ParaSCIP KW - branch-and-cut KW - branch-and-bound Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11921 UR - http://www.springerlink.com/content/t2160206253v7661/ ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving hard MIPLIB2003 problems with ParaSCIP on Supercomputers: An update N2 - Contemporary supercomputers can easily provide years of CPU time per wall-clock hour. One challenge of today's software development is how to harness this wast computing power in order to solve really hard mixed integer programming instances. In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in more than ten consecutive runs, restarting from checkpointing files. The contribution of this paper is threefold: For the first time, we present computational results of single runs for those two instances. Secondly, we provide new improved upper and lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we explain which new developments led to these results and discuss the current progress of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the Titan supercomputer, using up to 35,200 cores. T3 - ZIB-Report - 13-66 KW - Mixed Integer Programming KW - MIPLIB2003 KW - ParaSCIP KW - Ubiquity Generator Framework KW - Supercomputer Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42888 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Hoang, Nam-Dung A1 - Karbstein, Marika A1 - Koch, Thorsten A1 - Martin, Alexander T1 - How Many Steiner Terminals Can You Connect in 20 Years? N2 - Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem. T3 - ZIB-Report - 13-57 KW - Steiner tree KW - Steiner connectivity KW - Steiner tree packing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42524 SN - 1438-0064 ER - TY - GEN A1 - Maher, Stephen J. A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 4.0 N2 - The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences. T3 - ZIB-Report - 17-12 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62170 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Winkler, Michael A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 3.2 N2 - The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. T3 - ZIB-Report - 15-60 KW - mixed-integer linear and nonlinear programming KW - MIP solver KW - MINLP solver KW - linear programming KW - LP solver KW - simplex method KW - modeling KW - parallel branch-and-bound KW - branch-cut-and-price framework KW - generic column generation KW - Steiner tree solver KW - multi-criteria optimization KW - mixed-integer semidefinite programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57675 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - 制約整数計画ソルバ SCIP の並列化 T1 - Parallelizing the Constraint Integer Programming Solver SCIP N2 - 制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され,Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また,統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかったMIPLIB2010のインスタンスであるdg012142に最適解を与えた. N2 - The paradigm of Constraint Integer Programming (CIP) combines modeling and solving techniques from the fields of Constraint Programming (CP), Mixed Integer Programming (MIP) and Satisfiability Problems (SAT). The paradigm allows us to address a wide range of optimization problems. SCIP is an implementation of the idea of CIP and is now continuously extended by a group of researchers centered at Zuse Institute Berlin (ZIB). This paper introduces two parallel extensions of SCIP. One is ParaSCIP, which is intended to run on a large scale distributed memory computing environment, and the other is FiberSCIP, intended to run on shared memory computing environments. ParaSCIP has successfully been run on the HLRN II supercomputer utilizing up to 7,168 cores to solve a single difficult MIP. It has also been tested on an ISM supercomputer (Fujitsu PRIMERGY RX200S5 using up to 512 cores). The previously unsolved instance dg012142 from MIPLIB2010 was solved by using the ISM supercomputer. T2 - Parallelizing the Constraint Integer Programming Solver SCIP T3 - ZIB-Report - 13-22 KW - Mixed Integer Programming KW - Constraint Integer Programming KW - Parallel Computing KW - Distributed Memory Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18130 SN - 1438-0064 ER - TY - GEN A1 - Cook, William A1 - Koch, Thorsten A1 - Steffy, Daniel A1 - Wolter, Kati T1 - A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming N2 - We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann libraries and for a new collection of numerically difficult instances. T3 - ZIB-Report - 12-49 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17171 SN - 1438-0064 ER - TY - GEN A1 - Cook, William A1 - Koch, Thorsten A1 - Steffy, Daniel A1 - Wolter, Kati T1 - An Exact Rational Mixed-Integer Programming Solver N2 - We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann collections. T3 - ZIB-Report - 11-07 KW - mixed integer programming KW - branch-and-bound KW - exact computation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12329 ER - TY - GEN A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Kniasew, Dimitri A1 - Schlögel, Dominik A1 - Martin, Alexander A1 - Weninger, Dieter T1 - Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming N2 - SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice. T3 - ZIB-Report - 16-45 KW - supply chain management, supply network optimization, mixed-integer linear programming, primal heuristics, numerical stability, large-scale optimization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61107 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack - A solver for STP and variants with parallelization extensions N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. T3 - ZIB-Report - 15-27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54648 SN - 1438-0064 N1 - A revised version is provided here: http://nbn-resolving.de/urn:nbn:de:0297-zib-60170. ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法 T1 - Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite N2 - この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる. N2 - This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development. T3 - ZIB-Report - 12-24 KW - SCIP, MIP, MINLP, CIP, LP, modeling, optimization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15598 SN - 1438-0064 ER - TY - GEN A1 - Martin, Alexander A1 - Geißler, Björn A1 - Hayn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen N2 - Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert. T3 - ZIB-Report - 11-56 KW - Gasnetzplanung KW - Technische Kapazitäten KW - Nominierungsvalidierung KW - Buchungsvalidierung KW - Topologieplanung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15121 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Koch, Thorsten A1 - Tuchscherer, Andreas T1 - On the Effects of Minor Changes in Model Formulations N2 - Starting with the description of the Traveling Salesmen Problem formulation as given by van Vyve and Wolsey in the article Approximate extended formulations'', we investigate the effects of small variations onto the performance of contemporary mixed integer programming solvers. We will show that even minor changes in the formulation of the model can result in performance difference of more than a factor of 1000. As the results show it is not obvious which changes will result in performance improvements and which not. T3 - ZIB-Report - 08-29 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10808 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - Counting solutions of integer programs using unrestricted subtree detection N2 - In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection. T3 - ZIB-Report - 08-09 KW - Zählen KW - ganzzahlige Programme KW - IP KW - counting KW - integer programming KW - IP Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10632 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: a New Approach to Integrate CP and MIP N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-01 KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Chipverifikation KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10520 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements. T3 - ZIB-Report - 18-11 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67438 SN - 1438-0064 N1 - An earlier version of this report is available as ZR 17-03 at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6193. ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems N2 - This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches. T3 - ZIB-Report - 17-57 KW - Steiner tree KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65439 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten A1 - Maher, Stephen J. T1 - Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem N2 - The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack. T3 - ZIB-Report - 16-47 KW - Steiner tree problems KW - reduction techniques KW - prize-collecting Steiner tree problem KW - maximum-weight connected subgraph problem Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60420 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Ralphs, Ted A1 - Shinano, Yuji T1 - What could a million CPUs do to solve Integer Programs? N2 - Given the steady increase in cores per CPU, it is only a matter of time until supercomputers will have a million or more cores. In this article, we investigate the opportunities and challenges that will arise when trying to utilize this vast computing power to solve a single integer linear optimization problem. We also raise the question of whether best practices in sequential solution of ILPs will be effective in massively parallel environments. T3 - ZIB-Report - 11-40 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14222 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 N2 - This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic. T3 - ZIB-Report - 10-31 KW - Mixed Integer Programming KW - Problem Instances KW - IP KW - MIP KW - MIPLIB Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12953 ER -