TY - GEN A1 - Schlechte, Thomas A1 - Tanner, Andreas T1 - Railway capacity auctions with dual prices N2 - Railway scheduling is based on the principle of the construction of a conflict-free timetable. This leads to a strict definition of capacity: in contrast with road transportation, it can be said in advance whether a given railway infrastructure can accommodate - at least in theory - a certain set of train requests. Consequently, auctions for railway capacity are modeled as auctions of discrete goods -- the train slots. We present estimates for the efficiency gain that may be generated by slot auctioning in comparison with list price allocation. We introduce a new class of allocation and auction problems, the feasible assignment problem, that is a proper generalization of the well-known combinatorial auction problem. The feasible assignment class was designed to cover the needs for an auction mechanism for railway slot auctions, but is of interest in its own right. As a practical instance to state and solve the railway slot allocation problem, we present an integer programming formulation, briefly the ACP, which turns out to be an instance of the feasible assignment problem and whose dual problem yields prices that can be applied to define a useful activity rule for the linearized version of the Ausubel Milgrom Proxy auction. We perform a simulation aiming to measure the impact on efficiency and convergence rate. T3 - ZIB-Report - 10-10 KW - Combinatorial Auction Problem KW - Railway Track Allocation KW - Ausubel Milgrom Proxy Auction Mechanism Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11729 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - Railway Track Allocation by Rapid Branching N2 - The track allocation problem, also known as train routing problem or train timetabling problem, is to find a conflict-free set of train routes of maximum value in a railway network. Although it can be modeled as a standard path packing problem, instances of sizes relevant for real-world railway applications could not be solved up to now. We propose a rapid branching column generation approach that integrates the solution of the LP relaxation of a path coupling formulation of the problem with a special rounding heuristic. The approach is based on and exploits special properties of the bundle method for the approximate solution of convex piecewise linear functions. Computational results for difficult instances of the benchmark library TTPLIB are reported. T3 - ZIB-Report - 10-22 KW - Trassenallokationsproblem KW - Ganzzahlige Programmierung KW - Rapid-Branching-Heuristik KW - Proximale Bündelmethode KW - Optimization KW - Railway Track Allocation KW - Bundle Method KW - Rapid Branching Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11864 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Denißen, Jonas A1 - Heller, Simon A1 - Klug, Torsten A1 - Küpper, Michael A1 - Lindner, Niels A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Söhlke, Andreas A1 - Steadman, William T1 - Microscopic Timetable Optimization for a Moving Block System N2 - We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality. T3 - ZIB-Report - 21-13 KW - Moving Block KW - Railway Track Allocation KW - Railway Timetabling KW - Train Routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82547 SN - 1438-0064 ER -