TY - JOUR A1 - Lie, Han Cheng A1 - Sullivan, T. J. T1 - Erratum: Equivalence of weak and strong modes of measures on topological vector spaces (2018 Inverse Problems 34 115013) JF - Inverse Problems Y1 - 2018 U6 - https://doi.org/10.1088/1361-6420/aae55b VL - 34 IS - 12 SP - 129601 ER - TY - JOUR A1 - Oates, Chris A1 - Sullivan, T. J. T1 - A modern retrospective on probabilistic numerics JF - Statistics and Computing N2 - This article attempts to place the emergence of probabilistic numerics as a mathematical-statistical research field within its historical context and to explore how its gradual development can be related to modern formal treatments and applications. We highlight in particular the parallel contributions of Sul'din and Larkin in the 1960s and how their pioneering early ideas have reached a degree of maturity in the intervening period, mediated by paradigms such as average-case analysis and information-based complexity. We provide a subjective assessment of the state of research in probabilistic numerics and highlight some difficulties to be addressed by future works. Y1 - 2019 U6 - https://doi.org/10.1007/s11222-019-09902-z VL - 29 IS - 6 SP - 1335 EP - 1351 ER - TY - GEN A1 - Oates, Chris A1 - Cockayne, Jon A1 - Prangle, Dennis A1 - Sullivan, T. J. A1 - Girolami, Mark ED - Hickernell, F. J. ED - Kritzer, P. T1 - Optimality criteria for probabilistic numerical methods T2 - Multivariate Algorithms and Information-Based Complexity N2 - It is well understood that Bayesian decision theory and average case analysis are essentially identical. However, if one is interested in performing uncertainty quantification for a numerical task, it can be argued that the decision-theoretic framework is neither appropriate nor sufficient. To this end, we consider an alternative optimality criterion from Bayesian experimental design and study its implied optimal information in the numerical context. This information is demonstrated to differ, in general, from the information that would be used in an average-case-optimal numerical method. The explicit connection to Bayesian experimental design suggests several distinct regimes in which optimal probabilistic numerical methods can be developed. Y1 - 2020 U6 - https://doi.org/10.1515/9783110635461-005 VL - 27 SP - 65 EP - 88 PB - De Gruyter ER - TY - JOUR A1 - Kersting, Hans A1 - Sullivan, T. J. A1 - Hennig, Philipp T1 - Convergence rates of Gaussian ODE filters JF - Statistics and Computing Y1 - 2020 U6 - https://doi.org/10.1007/s11222-020-09972-4 VL - 30 SP - 1791 EP - 1816 PB - Springer CY - Statistics and Computing ER - TY - JOUR A1 - Lie, Han Cheng A1 - Sullivan, T. J. A1 - Teckentrup, Aretha T1 - Error bounds for some approximate posterior measures in Bayesian inference JF - Numerical Mathematics and Advanced Applications ENUMATH 2019 Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-55874-1_26 SP - 275 EP - 283 PB - Springer ER - TY - GEN A1 - Lie, Han Cheng A1 - Sullivan, T. J. T1 - Cameron--Martin theorems for sequences of Cauchy-distributed random variables N2 - Given a sequence of Cauchy-distributed random variables defined by a sequence of location parameters and a sequence of scale parameters, we consider another sequence of random variables that is obtained by perturbing the location or scale parameter sequences. Using a result of Kakutani on equivalence of infinite product measures, we provide sufficient conditions for the equivalence of laws of the two sequences. T3 - ZIB-Report - 16-40 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60230 SN - 1438-0064 ER - TY - GEN A1 - Sullivan, T. J. T1 - Well-posed Bayesian inverse problems and heavy-tailed stable Banach space priors N2 - This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart (Acta Numer. 19:451–559, 2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loève expansion for square-integrable random variables can be used to sample such measures. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data. T3 - ZIB-Report - 16-30 KW - Bayesian inverse problems KW - heavy-tailed distribution KW - Karhunen–Loève expansion KW - stable distribution KW - uncertainty quantification KW - well-posedness Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59422 SN - 1438-0064 ER - TY - GEN A1 - Cockayne, Jon A1 - Oates, Chris A1 - Sullivan, T. J. A1 - Girolami, Mark T1 - Probabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems N2 - This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse problems while accounting, in a rigorous way, for the impact of the discretisation of the forward problem. In particular, this confers robustness to failure of meshless methods, with statistical inferences driven to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenging setting of inverse problems with a non-linear forward model is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions. T3 - ZIB-Report - 16-31 KW - Probabilistic Numerics KW - Partial Differential Equations KW - Inverse Problems KW - Meshless Methods KW - Gaussian Processes KW - Pseudo-Marginal MCMC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59513 SN - 1438-0064 ER - TY - JOUR A1 - Lie, Han Cheng A1 - Sullivan, T. J. T1 - Cameron--Martin theorems for sequences of Cauchy-distributed random variables JF - arXiv N2 - Given a sequence of Cauchy-distributed random variables defined by a sequence of location parameters and a sequence of scale parameters, we consider another sequence of random variables that is obtained by perturbing the location or scale parameter sequences. Using a result of Kakutani on equivalence of infinite product measures, we provide sufficient conditions for the equivalence of laws of the two sequences. Y1 - 2016 SP - 1608.03784 ER - TY - GEN A1 - Nava-Yazdani, Esfandiar A1 - Hege, Hans-Christian A1 - von Tycowicz, Christoph A1 - Sullivan, T. J. T1 - A Shape Trajectories Approach to Longitudinal Statistical Analysis N2 - For Kendall’s shape space we determine analytically Jacobi fields and parallel transport, and compute geodesic regression. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and reduce the computational expense by several orders of magnitude. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As application example we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data only. T3 - ZIB-Report - 18-42 KW - shape space, shape trajectories, geodesic regression, longitudinal analysis, osteoarthritis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69759 SN - 1438-0064 ER -