TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Schmidt, Frank T1 - Reduced basis method for Maxwell's equations with resonance phenomena T2 - Proc. SPIE N2 - Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM) is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output relationships which can be evaluated orders of magnitude faster than the full model. This is advantageous in applications requiring the solution of Maxwell's equations for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D Maxwell's equations based on the finite element method which allows variations of geometric as well as material and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem exhibiting a resonance in the electric field. T3 - ZIB-Report - 15-37 KW - reduced basis method KW - finite element method KW - maxwell equation KW - photonic crystal KW - nano-photonics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55687 SN - 1438-0064 VL - 9630 SP - 96300R ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures T2 - Proc. SPIE N2 - Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell’s equation. Highly accurate geometrical modeling and numerical accuracy atcomputational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scatteringoptical wavelengths off periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range. T3 - ZIB-Report - 16-05 KW - reduced basis method KW - finite element method KW - rigorous optical modeling KW - reduced order models KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57239 SN - 1438-0064 VL - 9742 SP - 97420M ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank T1 - Reduced basis method for the optimization of nano-photonic devices N2 - Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occuring e. g. in optical metrology. The reduced basis method presented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources. T3 - ZIB-Report - 16-10 KW - reduced basis method KW - model reduction KW - optical critical dimension metrology KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57556 SN - 1438-0064 ER - TY - GEN A1 - Burger, Sven A1 - Klose, Roland A1 - Schädle, Achim A1 - Zschiedrich, Lin T1 - HelmPole - A finite element solver for scattering problems on unbounded domains: Implementation based on PML N2 - The solution of scattering problems described by the Helmholtz equation on unbounded domains is of importance for a wide variety of applications, for example in electromagnetics and acoustics. An implementation of a solver for scattering problems based on the programming language Matlab is introduced. The solver relies on the finite-element-method and on the perfectly-matched-layer-method, which allows for the simulation of scattering problems on complex geometries surrounded by inhomogeneous exterior domains. This report gives a number of detailed examples and can be understood as a user manual to the freely accessible code of the solver HelmPole. T3 - ZIB-Report - 03-38 KW - Helmholtz equation KW - finite element method KW - perfectly matched layer Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7609 ER - TY - GEN A1 - Schädle, Achim A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Klose, Roland A1 - Schmidt, Frank T1 - Domain Decomposition Method for Maxwell's Equations: Scattering off Periodic Structures N2 - We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer. T3 - ZIB-Report - 06-04 KW - domain decomposition KW - conical diffraction KW - electro-magnetic scattering KW - Maxwell's equations KW - Lithography KW - finite elements Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8984 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Döpking, Sandra A1 - Burger, Sven A1 - Matera, Sebastian T1 - Field Heterogeneities and their Impact on Photocatalysis: Combining optical and kinetic Monte Carlo Simulations on the Nanoscale N2 - Gaining insights into the working principles of photocatalysts on an atomic scale is a challenging task. The obviously high complexity of the reaction mechanism involving photo-excited electrons and holes is one reason. Another complicating aspect is that the electromagnetic field, driving photocatalysis, is not homogeneous on a nanoscale level for particle based catalysts as it is influenced by the particle’s shape and size. We present a simple model, inspired by the CO2 reduction on titania anatase, which addresses the impact of these heterogeneities on the photocatalytic kinetics by combining kinetic Monte Carlo with electromagnetic wave simulations. We find that average activity and especially efficiency might differ significantly between different particles. Moreover, we find sizable variation of the catalytic activity on a single facet of a nanocrystal. Besides this quantitative heterogeneity, the coverage situation in general changes laterally on this facet and we observe a concomitant change of the rate-determining steps. This heterogeneity on all levels of photocatalytic activity is masked in experimental studies, where only the spatially averaged activity can be addressed. Microkinetic models based on experimental findings might therefore not represent the true micro- scopic behavior, and mechanistic conclusion drawn from these need to be handled with care. T3 - ZIB-Report - 17-20 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63690 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Adaptive sampling strategies for efficient parameter scans in nano-photonic device simulations N2 - Rigorous optical simulations are an important tool in optimizing scattering properties of nano-photonic devices and are used, for example, in solar cell optimization. The finite element method (FEM) yields rigorous, time-harmonic, high accuracy solutions of the full 3D vectorial Maxwell's equations [1] and furthermore allows for great flexibility and accuracy in the geometrical modeling of these often complex shaped 3D nano-structures. A major drawback of frequency domain methods is the limitation of single frequency evaluations. For example the accurate computation of the short circuit current density of an amorphous silicon / micro-crystalline multi-junction thin film solar cell may require the solution of Maxwell's equations for over a hundred different wavelengths if an equidistant sampling strategy is employed. Also in optical metrology, wavelength scans are frequently used to reconstruct unknown geometrical and material properties of optical systems numerically from measured scatterometric data. In our contribution we present several adaptive numerical integration and sampling routines and study their efficiency in the context of the determination of generation rate profiles of solar cells. We show that these strategies lead to a reduction in the computational effort without loss of accuracy. We discuss the employment of tangential information in a Hermite interpolation scheme to achieve similar accuracy on coarser grids. We explore the usability of these strategies for scatterometry and solar cell simulations. T3 - ZIB-Report - 14-20 KW - finite element method KW - optical simulations KW - adaptive sampling KW - optical metrology KW - parameter scans KW - solar cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50395 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Barth, Carlo A1 - Pomplun, Jan A1 - Burger, Sven A1 - Becker, Christiane A1 - Schmidt, Frank T1 - Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs N2 - Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters. T3 - ZIB-Report - 16-06 KW - finite element method KW - rigorous optical modeling KW - photonic crystals KW - reduced basis method KW - parameter estimation KW - optical metrology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57249 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Weiser, Martin A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Bodermann, Bernd A1 - Burger, Sven T1 - Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion N2 - We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply the method to parameter reconstruction in optical scatterometry, where we take into account a priori information and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical accuracy on the reconstruction result. T3 - ZIB-Report - 17-37 KW - computational metrology KW - optical metrology KW - computational lithography KW - nanolithography KW - finite- element methods KW - nanooptics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64704 SN - 1438-0064 ER -