TY - JOUR A1 - Straube, Arthur A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - Höfling, Felix T1 - Stochastic pH oscillations in a model of the urea–urease reaction confined to lipid vesicles JF - J. Phys. Chem. Lett. N2 - The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpclett.1c03016 VL - 12 SP - 9888 EP - 9893 ER - TY - GEN A1 - Straube, Arthur A1 - Winkelmann, Stefanie A1 - Höfling, Felix T1 - Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles N2 - Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms. T3 - ZIB-Report - 22-21 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88179 SN - 1438-0064 ER -