TY - JOUR A1 - Zachow, Stefan T1 - Computational Planning in Facial Surgery JF - Facial Plastic Surgery N2 - This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1564717 VL - 31 IS - 5 SP - 446 EP - 462 ER - TY - GEN A1 - Lamas-Rodríguez, Julián A1 - Ehlke, Moritz A1 - Hoffmann, René A1 - Zachow, Stefan T1 - GPU-accelerated denoising of large tomographic data sets with low SNR BT - Application for non-invasive analysis of paleontological data N2 - Enhancements in tomographic imaging techniques facilitate non-destructive methods for visualizing fossil structures. However, to penetrate dense materials such as sediments or pyrites, image acquisition is typically performed with high beam energy and very sensitive image intensifiers, leading to artifacts and noise in the acquired data. The analysis of delicate fossil structures requires the images to be captured in maximum resolution, resulting in large data sets of several giga bytes (GB) in size. Since the structural information of interest is often almost in the same spatial range as artifacts and noise, image processing and segmentation algorithms have to cope with a very low signal-to-noise ratio (SNR). Within this report we present a study on the performance of a collection of denoising algorithms applied to a very noisy fossil dataset. The study shows that a non-local means (NLM) filter, in case it is properly configured, is able to remove a considerable amount of noise while preserving most of the structural information of interest. Based on the results of this study, we developed a software tool within ZIBAmira that denoises large tomographic datasets using an adaptive, GPU-accelerated NLM filter. With the help of our implementation a user can interactively configure the filter's parameters and thus its effectiveness with respect to the data of interest, while the filtering response is instantly visualized for a preselected region of interest (ROI). Our implementation efficiently denoises even large fossil datasets in a reasonable amount of time. T3 - ZIB-Report - 15-14 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56339 SN - 1438-0064 ER - TY - JOUR A1 - Zahn, Robert A1 - Grotjohann, Sarah A1 - Ramm, Heiko A1 - Zachow, Stefan A1 - Putzier, Michael A1 - Perka, Carsten A1 - Tohtz, Stephan T1 - Pelvic tilt compensates for increased acetabular anteversion JF - International Orthopaedics N2 - Pelvic tilt determines functional orientation of the acetabulum. In this study, we investigated the interaction of pelvic tilt and functional acetabular anteversion (AA) in supine position. Y1 - 2015 U6 - https://doi.org/10.1007/s00264-015-2949-6 VL - 40 IS - 8 SP - 1571 EP - 1575 ER - TY - CHAP A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Statistical Shape Modeling of Musculoskeletal Structures and Its Applications T2 - Computational Radiology for Orthopaedic Interventions N2 - Statistical shape models (SSM) describe the shape variability contained in a given population. They are able to describe large populations of complex shapes with few degrees of freedom. This makes them a useful tool for a variety of tasks that arise in computer-aided madicine. In this chapter we are going to explain the basic methodology of SSMs and present a variety of examples, where SSMs have been successfully applied. Y1 - 2016 SN - 978-3-319-23481-6 U6 - https://doi.org/10.1007/978-3-319-23482-3 VL - 23 SP - 1 EP - 23 PB - Springer ER - TY - JOUR A1 - Zachow, Stefan A1 - Heppt, Werner T1 - The Facial Profile JF - Facial Plastic Surgery N2 - Facial appearance in our societies is often associated with notions of attractiveness, juvenileness, beauty, success, and so forth. Hence, the role of facial plastic surgery is highly interrelated to a patient's desire to feature many of these positively connoted attributes, which of course, are subject of different cultural perceptions or social trends. To judge about somebody's facial appearance, appropriate quantitative measures as well as methods to obtain and compare individual facial features are required. This special issue on facial profile is intended to provide an overview on how facial characteristics are surgically managed in an interdisciplinary way based on experience, instrumentation, and modern technology to obtain an aesthetic facial appearance with harmonious facial proportions. The facial profile will be discussed within the context of facial aesthetics. Latest concepts for capturing facial morphology in high speed and impressive detail are presented for quantitative analysis of even subtle changes, aging effects, or facial expressions. In addition, the perception of facial profiles is evaluated based on eye tracking technology. Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1566132 VL - 31 IS - 5 SP - 419 EP - 420 ER - TY - CHAP A1 - Ramm, Heiko A1 - Victoria Morillo, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans ED - Freysinger, Wolfgang T1 - Visual Support for Positioning Hearing Implants T2 - Proceedings of the 12th annual meeting of the CURAC society Y1 - 2013 SP - 116 EP - 120 ER - TY - JOUR A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Heller, Markus O. A1 - Weber, Britta A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Omnidirectional Displacements for Deformable Surfaces JF - Medical Image Analysis Y1 - 2013 U6 - https://doi.org/10.1016/j.media.2012.11.006 VL - 17 IS - 4 SP - 429 EP - 441 PB - Elsevier ER - TY - JOUR A1 - Lamas-Rodríguez, Julián A1 - Heras, Dora Blanco A1 - Argüello, Francisco A1 - Kainmüller, Dagmar A1 - Zachow, Stefan A1 - Bóo, Montserrat T1 - GPU-accelerated level-set segmentation JF - Journal of Real-Time Image Processing Y1 - 2013 UR - http://dx.doi.org/10.1007/s11554-013-0378-6 U6 - https://doi.org/10.1007/s11554-013-0378-6 SN - 1861-8200 SP - 1 EP - 15 PB - Springer Berlin Heidelberg ER - TY - JOUR A1 - Hoffmann, René A1 - Schultz, Julia A. A1 - Schellhorn, Rico A1 - Rybacki, Erik A1 - Keupp, Helmut A1 - Gerden, S. R. A1 - Lemanis, Robert A1 - Zachow, Stefan T1 - Non-invasive imaging methods applied to neo- and paleontological cephalopod research JF - Biogeosciences N2 - Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied. Y1 - 2014 U6 - https://doi.org/10.5194/bg-11-2721-2014 N1 - To access the corresponding discussion paper go to www.biogeosciences-discuss.net/10/18803/2013/ - Biogeosciences Discuss., 10, 18803-18851, 2013 VL - 11 IS - 10 SP - 2721 EP - 2739 ER - TY - CHAP A1 - von Berg, Jens A1 - Dworzak, Jalda A1 - Klinder, Tobias A1 - Manke, Dirk A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Lorenz, Cristian T1 - Temporal Subtraction of Chest Radiographs Compensating Pose Differences T2 - SPIE Medical Imaging Y1 - 2011 ER - TY - CHAP A1 - Bindernagel, Matthias A1 - Kainmüller, Dagmar A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - An Articulated Statistical Shape Model of the Human Knee T2 - Bildverarbeitung für die Medizin 2011 Y1 - 2011 U6 - https://doi.org/10.1007/978-3-642-19335-4_14 SP - 59 EP - 63 PB - Springer ER - TY - CHAP A1 - Kahnt, Max A1 - Galloway, Francis A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Taylor, Mark A1 - Zachow, Stefan T1 - Robust and Intuitive Meshing of Bone-Implant Compounds T2 - CURAC Y1 - 2011 SP - 71 EP - 74 CY - Magdeburg ER - TY - GEN A1 - SK, Saevarsson A1 - GB, Sharma A1 - S, Montgomery A1 - KCT, Ho A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - C, Anglin T1 - Kinematic Comparison Between Gender Specific and Traditional Femoral Implants T2 - Proceedings of the 11th Alberta Biomedical Engineering (BME) Conference (Poster) Y1 - 2011 SP - 80 ER - TY - CHAP A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - Mehr Mathematik wagen in der Medizin T2 - acatech diskutiert, Produktionsfaktor Mathematik - Wie Mathematik Technik und Wirtschaft bewegt Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-89435-3 SP - 435 EP - 459 PB - Springer ER - TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Coupling Deformable Models for Multi-object Segmentation T2 - Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS) Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-70521-5_8 SP - 69 EP - 78 ER - TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Heller, Markus O. A1 - Hege, Hans-Christian T1 - Multi-Object Segmentation with Coupled Deformable Models T2 - Proc. Medical Image Understanding and Analysis Y1 - 2008 SP - 34 EP - 38 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Kuss, Anja A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Menzel, Randolf A1 - Rybak, Juergen T1 - Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active statistical shape models T2 - Proc. 1st INCF Congress of Neuroinformatics: Databasing and Modeling the Brain Y1 - 2008 U6 - https://doi.org/10.3389/conf.neuro.11.2008.01.064 ER - TY - CHAP A1 - Dworzak, Jalda A1 - Lamecker, Hans A1 - von Berg, Jens A1 - Klinder, Tobias A1 - Lorenz, Cristian A1 - Kainmüller, Dagmar A1 - Seim, Heiko A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Towards model-based 3-D reconstruction of the human rib cage from radiographs T2 - Proc. 7. Jahrestagung der Deutschen Gesellschaft für Computer-Roboterassistierte Chirurgie (CURAC) Y1 - 2008 SP - 193 EP - 196 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Heller, Markus O. A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model T2 - Eurographics Workshop on Visual Computing for Biomedicine (VCBM) Y1 - 2008 SP - 93 EP - 100 CY - Delft, Netherlands ER - TY - CHAP A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - More Mathematics into Medicine! T2 - Production Factor Mathematics Y1 - 2010 UR - http://www.springer.com/mathematics/book/978-3-642-11247-8 SP - 357 EP - 378 PB - Springer ER -