TY - CHAP A1 - Stalling, Detlev A1 - Seebaß, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie T2 - Bildverarbeitung für die Medizin 1999 - Algorithmen, Anwendungen Y1 - 1999 SP - 203 EP - 207 PB - Springer-Verlag, Berlin ER - TY - THES A1 - Zachow, Stefan T1 - Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes T2 - Computergestützte Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung Y1 - 2005 UR - www.dr.hut-verlag.de/titelMedizininformatik.html ER - TY - GEN A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Efficient projection and deformation of volumetric intensity models for accurate simulation of X-ray images N2 - We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual X-ray images generated using our novel approach with clinical data while varying the shape and density of the SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the reconstruction process. T3 - ZIB-Report - 12-40 KW - Digitally Reconstructed Radiograph (DRR), Anatomy Reconstruction, Statistical Shape and Intensity Model (SSIM), GPU acceleration Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16580 SN - 1438-0064 ER - TY - GEN A1 - Ramm, Heiko A1 - Morillo Victoria, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans T1 - Visual Support for Positioning Hearing Implants N2 - We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit. T3 - ZIB-Report - 13-53 KW - bone anchored hearing implant KW - surgery planning KW - segmentation KW - visualization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42495 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. T3 - ZIB-Report - 19-13 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72699 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. T3 - ZIB-Report - 19-06 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72704 SN - 1438-0064 N1 - Innovation Excellence Award 2020 ER - TY - CHAP A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan ED - Rea, Paul M. T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy T2 - Biomedical Visualisation N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. Y1 - 2019 SN - 978-3-030-19384-3 SN - 978-3-030-19385-0 U6 - https://doi.org/10.1007/978-3-030-19385-0_5 VL - 3 IS - 1156 SP - 67 EP - 84 PB - Springer Nature Switzerland AG ET - 1 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Schmidt, Nora Laura A1 - Lamecker, Hans A1 - Heppt, Werner A1 - Zachow, Stefan A1 - Goubergrits, Leonid T1 - The Healthy Nasal Cavity - Characteristics of Morphology and Related Airflow Based on a Statistical Shape Model Viewed from a Surgeon’s Perspective JF - Facial Plastic Surgery N2 - Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity’s mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream. KW - statistical shape model KW - nasal cavity KW - nasal breathing KW - nasal airflow KW - isthmus nasi KW - inferior turbinate Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677721 VL - 35 IS - 1 SP - 9 EP - 13 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Heppt, Werner A1 - Schmidt, Nora A1 - Goubergrits, Leonid T1 - Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery JF - Facial Plastic Surgery N2 - Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enablesmorphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient’s nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations. KW - nasal airflow simulation KW - nasal breathing KW - statistical shape model KW - diANA KW - nasal obstruction KW - rhinorespiratory homeostasis Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677720 VL - 35 IS - 1 SP - 1 EP - 8 ER - TY - CHAP A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) N2 - Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression. Y1 - 2019 U6 - https://doi.org/10.1109/ISBI.2019.8759201 SP - 40 EP - 43 ER -