TY - JOUR A1 - Grewe, Carl Martin A1 - Liu, Tuo A1 - Hildebrandt, Andrea A1 - Zachow, Stefan T1 - The Open Virtual Mirror Framework for Enfacement Illusions - Enhancing the Sense of Agency With Avatars That Imitate Facial Expressions JF - Behavior Research Methods Y1 - 2022 U6 - https://doi.org/10.3758/s13428-021-01761-9 PB - Springer ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Riehm, Felix A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - VoxSculpt: An Open-Source Voxel Library for Tomographic Volume Sculpting in Virtual Reality T2 - 2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023 N2 - Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality. Y1 - 2023 U6 - https://doi.org/10.1109/ICVR57957.2023.10169420 SP - 515 EP - 523 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - Design Challenges and Opportunities of Fossil Preparation Tools and Methods T2 - Proceedings of the 20th International Conference on Culture and Computer Science: Code and Materiality N2 - Fossil preparation is the activity of processing paleontological specimens for research and exhibition purposes. In addition to traditional mechanical extraction of fossils, preparation presently comprises non-destructive digital methods that are part of a relatively new field, namely virtual paleontology. Despite significant technological advances, both traditional and digital preparation remain cumbersome and time-consuming endeavors. However, this field has received scarce attention from a human-computer interaction perspective. The present study aims to elucidate the state-of-the-art for paleontological fossil preparation in order to determine its main challenges and start a conversation regarding opportunities for creating novel designs that tackle the field's current issues. We conducted a qualitative study involving both technical preparators and virtual paleontologists. The study was divided into two parts: First, we assembled technical preparators and paleontology researchers in a focus group session to discuss their workflows, obtain a preliminary understanding of their issues, and ideate solutions based on their counterparts' workflows. Next, we conducted a series of contextual inquiries involving direct observation and semi-structured in-depth interviews. We transcribed our recordings and examined the data through theoretical and inductive thematic analysis, clustering emerging themes and applying concepts from human-computer interaction and related fields. Our findings report on challenges faced by traditional and digital fossil preparators and potential opportunities to improve their tools and workflows. We contribute with a novel analysis of fossil preparation from an HCI perspective. Y1 - 2023 U6 - https://doi.org/10.1145/3623462.3623470 PB - Association for Computing Machinery CY - New York, NY, USA ER - TY - JOUR A1 - Wagendorf, Oliver A1 - Nahles, Susanne A1 - Vach, Kirstin A1 - Kernen, Florian A1 - Zachow, Stefan A1 - Heiland, Max A1 - Flügge, Tabea T1 - The impact of teeth and dental restorations on gray value distribution in cone-beam computer tomography - a pilot study JF - International Journal of Implant Dentistry N2 - Purpose: To investigate the influence of teeth and dental restorations on the facial skeleton's gray value distributions in cone-beam computed tomography (CBCT). Methods: Gray value selection for the upper and lower jaw segmentation was performed in 40 patients. In total, CBCT data of 20 maxillae and 20 mandibles, ten partial edentulous and ten fully edentulous in each jaw, respectively, were evaluated using two different gray value selection procedures: manual lower threshold selection and automated lower threshold selection. Two sample t tests, linear regression models, linear mixed models, and Pearson's correlation coefficients were computed to evaluate the influence of teeth, dental restorations, and threshold selection procedures on gray value distributions. Results: Manual threshold selection resulted in significantly different gray values in the fully and partially edentulous mandible. (p = 0.015, difference 123). In automated threshold selection, only tendencies to different gray values in fully edentulous compared to partially edentulous jaws were observed (difference: 58–75). Significantly different gray values were evaluated for threshold selection approaches, independent of the dental situation of the analyzed jaw. No significant correlation between the number of teeth and gray values was assessed, but a trend towards higher gray values in patients with more teeth was noted. Conclusions: Standard gray values derived from CT imaging do not apply for threshold-based bone segmentation in CBCT. Teeth influence gray values and segmentation results. Inaccurate bone segmentation may result in ill-fitting surgical guides produced on CBCT data and misinterpreting bone density, which is crucial for selecting surgical protocols. Y1 - 2023 U6 - https://doi.org/10.1186/s40729-023-00493-z VL - 9 IS - 27 ER - TY - CHAP A1 - Manogue, Kevin A1 - Schang, Tomasz A1 - Kuş, Dilara A1 - Müller, Jonas A1 - Zachow, Stefan A1 - Sengupta, Agniva T1 - Generalizing Shape-from-Template to Topological Changes T2 - Smart Tools and Applications in Graphics - Eurographics Italian Chapter Conference N2 - Reconstructing the surfaces of deformable objects from correspondences between a 3D template and a 2D image is well studied under Shape-from-Template (SfT) methods; however, existing approaches break down when topological changes accompany the deformation. We propose a principled extension of SfT that enables reconstruction in the presence of such changes. Our approach is initialized with a classical SfT solution and iteratively adapts the template by partitioning its spatial domain so as to minimize an energy functional that jointly encodes physical plausibility and reprojection consistency. We demonstrate that the method robustly captures a wide range of practically relevant topological events including tears and cuts on bounded 2D surfaces, thereby establishing the first general framework for topological-change-aware SfT. Experiments on both synthetic and real data confirm that our approach consistently outperforms baseline methods. Y1 - 2025 SN - 978-3-03868-296-7 U6 - https://doi.org/10.2312/stag.20251322 PB - The Eurographics Association ER - TY - JOUR A1 - Li, Jianning A1 - Bitter, Kerstin A1 - Nguyen, Anh Duc A1 - Shemesh, Hagay A1 - Zaslansky, Paul A1 - Zachow, Stefan T1 - Computational Insights into Root Canal Treatment: A Survey of Selected Methods in Imaging, Segmentation, Morphological Analysis, and Clinical Management JF - dentistry journal N2 - Background/Objectives: Root canal treatment (RCT) is a common dental procedure performed to preserve teeth by removing infected or at-risk pulp tissue caused by caries, trauma, or other pulpal conditions. A successful outcome, among others, depends on accurate identification of the root canal anatomy, planning a suitable therapeutic strategy, and ensuring a bacteria-tight root canal filling. Despite advances in dental techniques, there remains limited integration of computational methods to support key stages of treatment. This review aims to provide a comprehensive overview of computational methods applied throughout the full workflow of RCT, examining their potential to support clinical decision-making, improve treatment planning and outcome assessment, and help bridge the interdisciplinary gap between dentistry and computational research. Methods: A comprehensive literature review was conducted to identify and analyze computational methods applied to different stages of RCT, including root canal segmentation, morphological analysis, treatment planning, quality evaluation, follow-up, and prognosis prediction. In addition, a taxonomy based on application was developed to categorize these methods based on their function within the treatment process. Insights from the authors’ own research experience were also incorporated to highlight implementation challenges and practical considerations. Results: The review identified a wide range of computational methods aimed at enhancing the consistency and efficiency of RCT. Key findings include the use of advanced image processing for segmentation, image analysis for diagnosis and treatment planning, machine learning for morphological classification, and predictive modeling for outcome estimation. While some methods demonstrate high sensitivity and specificity in diagnostic and planning tasks, many remain in experimental stages and lack clinical integration. There is also a noticeable absence of advanced computational techniques for micro-computed tomography and morphological analysis. Conclusions: Computational methods offer significant potential to improve decision-making and outcomes in RCT. However, greater focus on clinical translation and development of cross-modality methodology is needed. The proposed taxonomy provides a structured framework for organizing existing methods and identifying future research directions tailored to specific phases of treatment. This review serves as a resource for both dental professionals, computer scientists and researchers seeking to bridge the gap between clinical practice and computational innovation. Y1 - 2025 U6 - https://doi.org/https://doi.org/10.3390/dj13120579 VL - 13 IS - 12 PB - MDPI ER - TY - JOUR A1 - Siqueira Rodrigues, Lucas A1 - Schmidt, Timo Torsten A1 - Israel, Johann Habakuk A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Kosch, Thomas T1 - Comparing the Effects of Visual, Haptic, and Visuohaptic Encoding on Memory Retention of Digital Objects in Virtual Reality JF - NordiCHI '24: Proceedings of the 13th Nordic Conference on Human-Computer Interaction N2 - Although Virtual Reality (VR) has undoubtedly improved human interaction with 3D data, users still face difficulties retaining important details of complex digital objects in preparation for physical tasks. To address this issue, we evaluated the potential of visuohaptic integration to improve the memorability of virtual objects in immersive visualizations. In a user study (N=20), participants performed a delayed match-to-sample task where they memorized stimuli of visual, haptic, or visuohaptic encoding conditions. We assessed performance differences between the conditions through error rates and response time. We found that visuohaptic encoding significantly improved memorization accuracy compared to unimodal visual and haptic conditions. Our analysis indicates that integrating haptics into immersive visualizations enhances the memorability of digital objects. We discuss its implications for the optimal encoding design in VR applications that assist professionals who need to memorize and recall virtual objects in their daily work. Y1 - 2024 U6 - https://doi.org/10.1145/3679318.3685349 SP - 1 EP - 13 ER - TY - JOUR A1 - Leskovar, Marko A1 - Heyland, Mark A1 - Trepczynski, Adam A1 - Zachow, Stefan T1 - Comparison of Global and Local Optimization Methods for Intensity-based 2D-3D Registration JF - Computers in Biology and Medicine Y1 - 2025 U6 - https://doi.org/10.1016/j.compbiomed.2024.109574 VL - 186 SP - 109574 PB - Elsevier ER - TY - JOUR A1 - Siqueira Rodrigues, Lucas A1 - Schmidt, Timo Torsten A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk A1 - Kosch, Thomas T1 - Assessing the Effects of Sensory Modality Conditions on Object Retention across Virtual Reality and Projected Surface Display Environments JF - Proceedings of the ACM on Human-Computer Interaction N2 - Haptic feedback reportedly enhances human interaction with 3D data, particularly improving the retention of mental representations of digital objects in immersive settings. However, the effectiveness of visuohaptic integration in promoting object retention across different display environments remains underexplored. Our study extends previous research on the retention effects of haptics from virtual reality to a projected surface display to assess whether earlier findings generalize to 2D environments. Participants performed a delayed match-to-sample task incorporating visual, haptic, and visuohaptic sensory feedback within a projected surface display environment. We compared error rates and response times across these sensory modalities and display environments. Our results reveal that visuohaptic integration significantly enhances object retention on projected surfaces, benefiting task performance across display environments. Our findings suggest that haptics can improve object retention without requiring fully immersive setups, offering insights for the design of interactive systems that assist professionals who rely on precise mental representations of digital objects. Y1 - 2024 U6 - https://doi.org/10.1145/3698137 VL - 8 IS - ISS SP - 255 EP - 282 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Kosch, Thomas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - MorphoHaptics: An Open-Source Tool for Visuohaptic Exploration of Morphological Image Datasets T2 - KUI '24: Proceedings of the 21th International Conference on Culture and Computer Science: from Humanism to Digital Humanities N2 - Although digital methods have significantly advanced morphology, practitioners are still challenged to understand and process tomographic data of specimens. As automated processing of fossil data is still insufficient, morphologists still engage in intensive manual work to digitally prepare fossils for research objectives. We present an open-source tool that enables morphologists to explore tomographic data similarly to the physical workflows that traditional fossil preparators experience in the field. Using questionnaires, we assessed the usability of our prototype for virtual fossil preparation and related common tasks in the digital preparation workflow. Our findings indicate that integrating haptics into the virtual preparation workflow enhances the understanding of the morphology and material properties of working specimens and that the visuohaptic sculpting of fossil volumes is straightforward and is an improvement over current digital specimen processing methods. Y1 - 2025 U6 - https://doi.org/10.1145/3719236.3719271 SP - 1 EP - 10 ER -