TY - JOUR A1 - Grewe, Carl Martin A1 - Liu, Tuo A1 - Hildebrandt, Andrea A1 - Zachow, Stefan T1 - The Open Virtual Mirror Framework for Enfacement Illusions - Enhancing the Sense of Agency With Avatars That Imitate Facial Expressions JF - Behavior Research Methods Y1 - 2022 U6 - https://doi.org/10.3758/s13428-021-01761-9 PB - Springer ER - TY - JOUR A1 - Grewe, Carl Martin A1 - Liu, Tuo A1 - Kahl, Christoph A1 - Andrea, Hildebrandt A1 - Zachow, Stefan T1 - Statistical Learning of Facial Expressions Improves Realism of Animated Avatar Faces JF - Frontiers in Virtual Reality Y1 - 2021 U6 - https://doi.org/10.3389/frvir.2021.619811 VL - 2 SP - 1 EP - 13 PB - Frontiers ER - TY - GEN A1 - Grewe, Carl Martin A1 - Le Roux, Gabriel A1 - Pilz, Sven-Kristofer A1 - Zachow, Stefan T1 - Spotting the Details: The Various Facets of Facial Expressions N2 - 3D Morphable Models (MM) are a popular tool for analysis and synthesis of facial expressions. They represent plausible variations in facial shape and appearance within a low-dimensional parameter space. Fitted to a face scan, the model's parameters compactly encode its expression patterns. This expression code can be used, for instance, as a feature in automatic facial expression recognition. For accurate classification, an MM that can adequately represent the various characteristic facets and variants of each expression is necessary. Currently available MMs are limited in the diversity of expression patterns. We present a novel high-quality Facial Expression Morphable Model built from a large-scale face database as a tool for expression analysis and synthesis. Establishment of accurate dense correspondence, up to finest skin features, enables a detailed statistical analysis of facial expressions. Various characteristic shape patterns are identified for each expression. The results of our analysis give rise to a new facial expression code. We demonstrate the advantages of such a code for the automatic recognition of expressions, and compare the accuracy of our classifier to state-of-the-art. T3 - ZIB-Report - 18-06 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67696 SN - 1438-0064 ER - TY - CHAP A1 - Grewe, Carl Martin A1 - le Roux, Gabriel A1 - Pilz, Sven-Kristofer A1 - Zachow, Stefan T1 - Spotting the Details: The Various Facets of Facial Expressions T2 - IEEE International Conference on Automatic Face and Gesture Recognition Y1 - 2018 U6 - https://doi.org/10.1109/FG.2018.00049 SP - 286 EP - 293 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Riehm, Felix A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - VoxSculpt: An Open-Source Voxel Library for Tomographic Volume Sculpting in Virtual Reality T2 - 2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023 N2 - Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality. Y1 - 2023 U6 - https://doi.org/10.1109/ICVR57957.2023.10169420 SP - 515 EP - 523 ER - TY - JOUR A1 - Wagendorf, Oliver A1 - Nahles, Susanne A1 - Vach, Kirstin A1 - Kernen, Florian A1 - Zachow, Stefan A1 - Heiland, Max A1 - Flügge, Tabea T1 - The impact of teeth and dental restorations on gray value distribution in cone-beam computer tomography - a pilot study JF - International Journal of Implant Dentistry N2 - Purpose: To investigate the influence of teeth and dental restorations on the facial skeleton's gray value distributions in cone-beam computed tomography (CBCT). Methods: Gray value selection for the upper and lower jaw segmentation was performed in 40 patients. In total, CBCT data of 20 maxillae and 20 mandibles, ten partial edentulous and ten fully edentulous in each jaw, respectively, were evaluated using two different gray value selection procedures: manual lower threshold selection and automated lower threshold selection. Two sample t tests, linear regression models, linear mixed models, and Pearson's correlation coefficients were computed to evaluate the influence of teeth, dental restorations, and threshold selection procedures on gray value distributions. Results: Manual threshold selection resulted in significantly different gray values in the fully and partially edentulous mandible. (p = 0.015, difference 123). In automated threshold selection, only tendencies to different gray values in fully edentulous compared to partially edentulous jaws were observed (difference: 58–75). Significantly different gray values were evaluated for threshold selection approaches, independent of the dental situation of the analyzed jaw. No significant correlation between the number of teeth and gray values was assessed, but a trend towards higher gray values in patients with more teeth was noted. Conclusions: Standard gray values derived from CT imaging do not apply for threshold-based bone segmentation in CBCT. Teeth influence gray values and segmentation results. Inaccurate bone segmentation may result in ill-fitting surgical guides produced on CBCT data and misinterpreting bone density, which is crucial for selecting surgical protocols. Y1 - 2023 U6 - https://doi.org/10.1186/s40729-023-00493-z VL - 9 IS - 27 ER - TY - GEN A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - 3D Assessment of Osteosynthesis based on 2D Radiographs N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient-specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery. T3 - ZIB-Report - 15-47 KW - 3d-reconstruction from 2d X-rays KW - statistical shape and intensity models KW - osteosynthesis follow-up Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56217 SN - 1438-0064 ER - TY - CHAP A1 - Krämer, Martin A1 - Herrmann, Karl-Heinz A1 - Boeth, Heide A1 - Tycowicz, Christoph von A1 - König, Christian A1 - Zachow, Stefan A1 - Ehrig, Rainald A1 - Hege, Hans-Christian A1 - Duda, Georg A1 - Reichenbach, Jürgen T1 - Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup T2 - ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada Y1 - 2015 ER - TY - CHAP A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - Assessing the relative positioning of an osteosynthesis plate to the patient-specific femoral shape from plain 2D radiographs T2 - Proceedings of the 15th Annual Meeting of CAOS-International (CAOS) N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing. KW - 3d-­reconstruction from 2d X­rays KW - statistical shape and intensity models KW - fracture fixation of the distal femur KW - pose estimation Y1 - 2015 ER - TY - CHAP A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - 3D Assessment of Osteosynthesis based on 2D Radiographs T2 - Proceedings of the Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC) N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient- specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery. KW - 3d-reconstruction from 2d X-rays KW - osteosynthesis follow-up KW - statistical shape and intensity models Y1 - 2015 SP - 317 EP - 321 ER -