TY - GEN A1 - Grewe, Carl Martin A1 - Zachow, Stefan ED - Doll, Nikola ED - Bredekamp, Horst ED - Schäffner, Wolfgang T1 - Face to Face-Interface T2 - +ultra. Knowledge & Gestaltung Y1 - 2017 SP - 320 EP - 321 PB - Seemann Henschel ER - TY - CHAP A1 - Grewe, Carl Martin A1 - Zachow, Stefan T1 - Fully Automated and Highly Accurate Dense Correspondence for Facial Surfaces T2 - Computer Vision – ECCV 2016 Workshops N2 - We present a novel framework for fully automated and highly accurate determination of facial landmarks and dense correspondence, e.g. a topologically identical mesh of arbitrary resolution, across the entire surface of 3D face models. For robustness and reliability of the proposed approach, we are combining 2D landmark detectors and 3D statistical shape priors with a variational matching method. Instead of matching faces in the spatial domain only, we employ image registration to align the 2D parametrization of the facial surface to a planar template we call the Unified Facial Parameter Domain (ufpd). This allows us to simultaneously match salient photometric and geometric facial features using robust image similarity measures while reasonably constraining geometric distortion in regions with less significant features. We demonstrate the accuracy of the dense correspondence established by our framework on the BU3DFE database with 2500 facial surfaces and show, that our framework outperforms current state-of-the-art methods with respect to the fully automated location of facial landmarks. Y1 - 2016 U6 - https://doi.org/10.1007/978-3-319-48881-3_38 VL - 9914 SP - 552 EP - 568 PB - Springer International Publishing ER - TY - GEN A1 - Wilson, David A1 - Bücher, Pia A1 - Grewe, Carl Martin A1 - Anglin, Carolyn A1 - Zachow, Stefan A1 - Michael, Dunbar T1 - Validation of Three Dimensional Models of the Distal Femur Created from Surgical Navigation Point Cloud Data T2 - 15th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) Y1 - 2015 ER - TY - JOUR A1 - Grewe, Carl Martin A1 - Schreiber, Lisa A1 - Zachow, Stefan T1 - Fast and Accurate Digital Morphometry of Facial Expressions JF - Facial Plastic Surgery Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1564720 VL - 31 IS - 05 SP - 431 EP - 438 PB - Thieme Medical Publishers CY - New York ER - TY - GEN A1 - Grewe, Carl Martin A1 - Lamecker, Hans A1 - Zachow, Stefan ED - Hermanussen, Michael T1 - Landmark-based Statistical Shape Analysis T2 - Auxology - Studying Human Growth and Development url Y1 - 2013 UR - http://www.schweizerbart.de/publications/detail/isbn/9783510652785 SP - 199 EP - 201 PB - Schweizerbart Verlag, Stuttgart ER - TY - GEN A1 - Wilson, David A1 - Bücher, Pia A1 - Grewe, Carl Martin A1 - Mocanu, Valentin A1 - Anglin, Carolyn A1 - Zachow, Stefan A1 - Dunbar, Michael T1 - Validation of Three Dimensional Models of the Distal Femur Created from Surgical Navigation Data T2 - Orthopedic Research Society Annual Meeting Y1 - 2015 CY - Las Vegas, Nevada ER - TY - GEN A1 - Grewe, Carl Martin A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Digital morphometry: The Potential of Statistical Shape Models T2 - Anthropologischer Anzeiger. Journal of Biological and Clinical Anthropology Y1 - 2011 SP - 506 EP - 506 ER - TY - GEN A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - Assessing the Relative Positioning of an Osteosynthesis Plate to the Patient-Specific Femoral Shape from Plain 2D Radiographs N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing. T3 - ZIB-Report - 15-21 KW - 3d-­reconstruction from 2d X­rays KW - statistical shape and intensity models KW - fracture fixation of the distal femur KW - pose estimation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54268 SN - 1438-0064 ER - TY - JOUR A1 - Taylor, William R. A1 - Pöpplau, Berry M. A1 - König, Christian A1 - Ehrig, Rainald A1 - Zachow, Stefan A1 - Duda, Georg A1 - Heller, Markus O. T1 - The medial-lateral force distribution in the ovine stifle joint during walking JF - Journal of Orthopaedic Research Y1 - 2011 U6 - https://doi.org/10.1002/jor.21254 VL - 29 IS - 4 SP - 567 EP - 571 ER - TY - GEN A1 - Grewe, C. Martin A1 - Zachow, Stefan T1 - Release of the FexMM for the Open Virtual Mirror Framework N2 - THIS MODEL IS FOR NON-COMMERCIAL RESEARCH PURPOSES. ONLY MEMBERS OF UNIVERSITIES OR NON-COMMERCIAL RESEARCH INSTITUTES ARE ELIGIBLE TO APPLY. 1. Download, fill, and sign the form available from: https://media.githubusercontent.com/media/mgrewe/ovmf/main/data/fexmm_license_agreement.pdf 2. Send the signed form to: fexmm@zib.de NOTE: Use an official email address of your institution for the request. Y1 - 2021 U6 - https://doi.org/10.12752/8532 ER -