TY - CHAP A1 - Dornheim, Jana A1 - Born, Silvia A1 - Zachow, Stefan A1 - Gessat, Michael A1 - Wellein, Daniela A1 - Strauß, Gero A1 - Preim, Bernhard A1 - Bartz, Dirk ED - Hauser, Helwig T1 - Bildanalyse, Visualisierung und Modellerstellung für die Implantatplanung im Mittelohr T2 - Proc. of Simulation and Visualization 2008 Y1 - 2008 SP - 139 EP - 154 ER - TY - GEN A1 - Deuflhard, Peter A1 - Zachow, Stefan T1 - Mathematische Therapie- und Operationsplanung Y1 - 2012 SP - 89 EP - 90 PB - Berliner Wirtschaftsgespräche e.V. CY - Berlin ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Mathematics in Facial Surgery JF - AMS Notices Y1 - 2006 VL - 53 IS - 9 SP - 1012 EP - 1016 ER - TY - GEN A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - Mehr Mathematik wagen in der Medizin N2 - Der Artikel gibt einen Einblick in das reiche Feld der Zusammenarbeit zwischen Mathematik und Medizin. Beispielhaft werden drei Erfolgsmodelle dargestellt: Medizinische Bildgebung, mathematische Modellierung und Biosignalverarbeitung im Bereich der Dynamik des Herzens sowie mathematische Modellierung und Simulation in der Krebstherapie Hyperthermie und der Mund-Kiefer-Gesichts-Chirurgie. In allen Fällen existiert ein Gleichklang der Interessen von Medizin und Mathematik: Beide Disziplinen wollen die Resultate schnell und zuverlässig. Für die Klinik heißt das, dass notwendige Rechnungen in möglichst kurzer Zeit, und zwar auf dem PC, ablaufen müssen und dass die Resultate so genau und belastbar sein müssen, dass medizinische Entscheidungen darauf aufbauen können. Für die Mathematik folgt daraus, dass höchste Anforderungen an die Effizienz der verwendeten Algorithmen und die darauf aufbauende Software in Numerik und Visualisierung zu stellen sind. Jedes Kapitel endet mit einer Darstellung der Perspektive des jeweiligen Gebietes. Abschließend werden mögliche Handlungsoptionen für Politik und Wirtschaft diskutiert. T3 - ZIB-Report - 08-25 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10776 SN - 1438-0064 ER - TY - CHAP A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - Mehr Mathematik wagen in der Medizin T2 - acatech diskutiert, Produktionsfaktor Mathematik - Wie Mathematik Technik und Wirtschaft bewegt Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-89435-3 SP - 435 EP - 459 PB - Springer ER - TY - CHAP A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - More Mathematics into Medicine! T2 - Production Factor Mathematics Y1 - 2010 UR - http://www.springer.com/mathematics/book/978-3-642-11247-8 SP - 357 EP - 378 PB - Springer ER - TY - JOUR A1 - Campoli, Gianni A1 - Baka, Nora A1 - Kaptein, Bart A1 - Valstar, Edward A1 - Zachow, Stefan A1 - Weinans, Harrie A1 - Zadpoor, Amir Abbas T1 - Relationship between the shape and density distribution of the femur and its natural frequencies of vibration JF - Journal of Biomechanics N2 - It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies. Y1 - 2014 U6 - https://doi.org/10.1016/j.jbiomech.2014.08.008 VL - 47 SP - 3334 EP - 3343 PB - Elsevier ER - TY - JOUR A1 - Brüning, Jan A1 - Hildebrandt, Thomas A1 - Heppt, Werner A1 - Schmidt, Nora A1 - Lamecker, Hans A1 - Szengel, Angelika A1 - Amiridze, Natalja A1 - Ramm, Heiko A1 - Bindernagel, Matthias A1 - Zachow, Stefan A1 - Goubergrits, Leonid T1 - Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity JF - Scientific Reports N2 - This study’s objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced wall shear stresses and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently. Y1 - 2020 UR - https://rdcu.be/b2irD U6 - https://doi.org/10.1038/s41598-020-60755-3 VL - 3755 IS - 10 ER - TY - JOUR A1 - Brüning, Jan A1 - Goubergrits, Leonid A1 - Heppt, Werner A1 - Zachow, Stefan A1 - Hildebrandt, Thomas T1 - Numerical Analysis of Nasal Breathing - A Pilot Study JF - Facial Plastic Surgery N2 - Background: Currently, there is no fully sufficient way to differentiate between symptomatic and normal nasal breathing. Using the nose’s total resistance is disputed as a valid means to objectify nasal airflow, and the need for a more comprehensive diagnostic method is increasing. This work’s aim was to test a novel approach considering intranasal wall shear stress as well as static pressure maps obtained by computational fluid dynamics (CFD). Methods: X-ray computed tomography (CT) scan data of six symptom-free subjects and seven symptomatic patients were used. Patient-specific geometries of the nasal cavity were segmented from these data sets. Inspiratory and expiratory steady airflow simulations were performed using CFD. Calculated static pressures and wall shear stresses (WSS) were mapped onto a common template of the nasal septum, allowing for comparison of these parameters between the two patient groups. Results: Significant differences in wall shear stress distributions during the inspiratory phase could be identified between the two groups, whereas no differences were found for the expiratory phase. It is assumed that one essential feature of normal nasal breathing probably consists in distinctively different intranasal flow fields for inspiration and expiration. This is in accordance with previous investigations. Conclusion: The proposed method seems to be a promising tool for developing a new kind of patient-specific assessment of nasal breathing. However, more studies and a greater case number of data with an expanded focus, would be ideal. Y1 - 2017 U6 - https://doi.org/doi:10.1055/s-0037-1603789 VL - 33 IS - 4 SP - 388 EP - 395 ER - TY - CHAP A1 - Bindernagel, Matthias A1 - Kainmüller, Dagmar A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - An Articulated Statistical Shape Model of the Human Knee T2 - Bildverarbeitung für die Medizin 2011 Y1 - 2011 U6 - https://doi.org/10.1007/978-3-642-19335-4_14 SP - 59 EP - 63 PB - Springer ER - TY - GEN A1 - Bindernagel, Matthias A1 - Kainmüller, Dagmar A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Analysis of inter-individual anatomical shape variations of joint structures T2 - Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS) Y1 - 2012 IS - 210 ER - TY - JOUR A1 - Bernard, Florian A1 - Salamanca, Luis A1 - Thunberg, Johan A1 - Tack, Alexander A1 - Jentsch, Dennis A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hertel, Frank A1 - Goncalves, Jorge A1 - Gemmar, Peter T1 - Shape-aware Surface Reconstruction from Sparse Data JF - arXiv N2 - The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods. Y1 - 2016 SP - 1602.08425v1 ER - TY - JOUR A1 - Bernard, Florian A1 - Salamanca, Luis A1 - Thunberg, Johan A1 - Tack, Alexander A1 - Jentsch, Dennis A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hertel, Frank A1 - Goncalves, Jorge A1 - Gemmar, Peter T1 - Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds JF - Medical Image Analysis N2 - The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. Y1 - 2017 UR - http://www.sciencedirect.com/science/article/pii/S1361841517300233 U6 - https://doi.org/10.1016/j.media.2017.02.005 VL - 38 SP - 77 EP - 89 ER - TY - CHAP A1 - Baum, Daniel A1 - Mahlow, Kristin A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Müller, Johannes A1 - Hege, Hans-Christian T1 - The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis) T2 - Abstract in DigitalSpecimen 2014 N2 - Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term ‘surface-based morphometrics’. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called ‘surface paths’, might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique. Y1 - 2014 ER - TY - CHAP A1 - Amiranashvili, Tamaz A1 - Lüdke, David A1 - Li, Hongwei A1 - Menze, Bjoern A1 - Zachow, Stefan T1 - Learning Shape Reconstruction from Sparse Measurements with Neural Implicit Functions T2 - Medical Imaging with Deep Learning N2 - Reconstructing anatomical shapes from sparse or partial measurements relies on prior knowledge of shape variations that occur within a given population. Such shape priors are learned from example shapes, obtained by segmenting volumetric medical images. For existing models, the resolution of a learned shape prior is limited to the resolution of the training data. However, in clinical practice, volumetric images are often acquired with highly anisotropic voxel sizes, e.g. to reduce image acquisition time in MRI or radiation exposure in CT imaging. The missing shape information between the slices prohibits existing methods to learn a high-resolution shape prior. We introduce a method for high-resolution shape reconstruction from sparse measurements without relying on high-resolution ground truth for training. Our method is based on neural implicit shape representations and learns a continuous shape prior only from highly anisotropic segmentations. Furthermore, it is able to learn from shapes with a varying field of view and can reconstruct from various sparse input configurations. We demonstrate its effectiveness on two anatomical structures: vertebra and femur, and successfully reconstruct high-resolution shapes from sparse segmentations, using as few as three orthogonal slices. Y1 - 2022 ER - TY - JOUR A1 - Amiranashvili, Tamaz A1 - Lüdke, David A1 - Li, Hongwei Bran A1 - Zachow, Stefan A1 - Menze, Bjoern T1 - Learning continuous shape priors from sparse data with neural implicit functions JF - Medical Image Analysis N2 - Statistical shape models are an essential tool for various tasks in medical image analysis, including shape generation, reconstruction and classification. Shape models are learned from a population of example shapes, which are typically obtained through segmentation of volumetric medical images. In clinical practice, highly anisotropic volumetric scans with large slice distances are prevalent, e.g., to reduce radiation exposure in CT or image acquisition time in MR imaging. For existing shape modeling approaches, the resolution of the emerging model is limited to the resolution of the training shapes. Therefore, any missing information between slices prohibits existing methods from learning a high-resolution shape prior. We propose a novel shape modeling approach that can be trained on sparse, binary segmentation masks with large slice distances. This is achieved through employing continuous shape representations based on neural implicit functions. After training, our model can reconstruct shapes from various sparse inputs at high target resolutions beyond the resolution of individual training examples. We successfully reconstruct high-resolution shapes from as few as three orthogonal slices. Furthermore, our shape model allows us to embed various sparse segmentation masks into a common, low-dimensional latent space — independent of the acquisition direction, resolution, spacing, and field of view. We show that the emerging latent representation discriminates between healthy and pathological shapes, even when provided with sparse segmentation masks. Lastly, we qualitatively demonstrate that the emerging latent space is smooth and captures characteristic modes of shape variation. We evaluate our shape model on two anatomical structures: the lumbar vertebra and the distal femur, both from publicly available datasets. Y1 - 2024 U6 - https://doi.org/10.1016/j.media.2024.103099 VL - 94 SP - 103099 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - An as-invariant-as-possible GL+(3)-based Statistical Shape Model T2 - Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA) N2 - We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-33226-6_23 VL - 11846 SP - 219 EP - 228 PB - Springer ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. T3 - ZIB-Report - 19-20 KW - Statistical shape analysis KW - Principal geodesic analysis KW - Lie groups KW - Classification KW - Manifold valued statistics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74497 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - An as-invariant-as-possible GL+(3)-based Statistical Shape Model N2 - We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling. T3 - ZIB-Report - 19-46 KW - Statistical shape analysis KW - Tangent principal component analysis KW - Lie groups KW - Classification KW - Manifold valued statistics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74566 SN - 1438-0064 ER - TY - JOUR A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms JF - Medical Image Analysis N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102178 VL - 73 ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. T3 - ZIB-Report - 21-09 KW - Statistical shape analysis KW - Osteoarthritis KW - Geometric statistics KW - Riemannian manifolds Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81930 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis T2 - Proc. Information Processing in Medical Imaging (IPMI) N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-78191-0_14 SP - 177 EP - 188 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-32251-9_3 VL - 11767 SP - 21 EP - 29 PB - Springer ER - TY - CHAP A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Wilson, Dave A1 - Anglin, Carolyn A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Evaluating two methods for Geometry Reconstruction from Sparse Surgical Navigation Data T2 - Proceedings of the Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC) N2 - In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients. We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated. KW - Total Knee Arthoplasty KW - Sparse Geometry Reconstruction KW - Statistical Shape Models Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65339 VL - 16 SP - 24 EP - 30 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Wilson, Dave A1 - Anglin, Carolyn A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Evaluating two methods for Geometry Reconstruction from Sparse Surgical Navigation Data N2 - In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients. We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated. T3 - ZIB-Report - 17-71 KW - Knee Arthroplasty KW - Sparse Geometry Reconstruction KW - Statistical Shape Models Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66052 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - Medical Imaging with Deep Learning N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging, that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The method is evaluated on data of the MICCAI grand challenge "Segmentation of Knee Images 2010". For the first time an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy. In conclusion, combining of anatomical knowledge using SSMs with localized classification via CNNs results in a state-of-the-art segmentation method. Y1 - 2018 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. T3 - ZIB-Report - 19-06 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72704 SN - 1438-0064 N1 - Innovation Excellence Award 2020 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material) T2 - Medical Image Analysis N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. Y1 - 2019 U6 - https://doi.org/10.12752/4.ATEZ.1.0 N1 - OAI-ZIB dataset VL - 52 IS - 2 SP - 109 EP - 118 ER - TY - JOUR A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative JF - Medical Image Analysis N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. Y1 - 2019 U6 - https://doi.org/10.1016/j.media.2018.11.009 VL - 52 IS - 2 SP - 109 EP - 118 ER - TY - GEN A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. T3 - ZIB-Report - 19-13 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72699 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan ED - Rea, Paul M. T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy T2 - Biomedical Visualisation N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. Y1 - 2019 SN - 978-3-030-19384-3 SN - 978-3-030-19385-0 U6 - https://doi.org/10.1007/978-3-030-19385-0_5 VL - 3 IS - 1156 SP - 67 EP - 84 PB - Springer Nature Switzerland AG ET - 1 ER - TY - JOUR A1 - Al Hajj, Hassan A1 - Sahu, Manish A1 - Lamard, Mathieu A1 - Conze, Pierre-Henri A1 - Roychowdhury, Soumali A1 - Hu, Xiaowei A1 - Marsalkaite, Gabija A1 - Zisimopoulos, Odysseas A1 - Dedmari, Muneer Ahmad A1 - Zhao, Fenqiang A1 - Prellberg, Jonas A1 - Galdran, Adrian A1 - Araujo, Teresa A1 - Vo, Duc My A1 - Panda, Chandan A1 - Dahiya, Navdeep A1 - Kondo, Satoshi A1 - Bian, Zhengbing A1 - Bialopetravicius, Jonas A1 - Qiu, Chenghui A1 - Dill, Sabrina A1 - Mukhopadyay, Anirban A1 - Costa, Pedro A1 - Aresta, Guilherme A1 - Ramamurthy, Senthil A1 - Lee, Sang-Woong A1 - Campilho, Aurelio A1 - Zachow, Stefan A1 - Xia, Shunren A1 - Conjeti, Sailesh A1 - Armaitis, Jogundas A1 - Heng, Pheng-Ann A1 - Vahdat, Arash A1 - Cochener, Beatrice A1 - Quellec, Gwenole T1 - CATARACTS: Challenge on Automatic Tool Annotation for cataRACT Surgery JF - Medical Image Analysis N2 - Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular, the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future. Y1 - 2019 U6 - https://doi.org/10.1016/j.media.2018.11.008 N1 - Best paper award - Computer Graphics Night 2020 (TU Darmstadt) VL - 52 IS - 2 SP - 24 EP - 41 PB - Elsevier ER - TY - JOUR A1 - Akbari Shandiz, Mohsen A1 - Boulos, Paul A1 - Sævarsson, Stefan A1 - Ramm, Heiko A1 - Fu, Chun Kit A1 - Miller, Stephen A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Changes in Knee Shape and Geometry Resulting from Total Knee Arthroplasty JF - Journal of Engineering in Medicine N2 - Changes in knee shape and geometry resulting from total knee arthroplasty can affect patients in numerous important ways: pain, function, stability, range of motion, and kinematics. Quantitative data concerning these changes have not been previously available, to our knowledge, yet are essential to understand individual experiences of total knee arthroplasty and thereby improve outcomes for all patients. The limiting factor has been the challenge of accurately measuring these changes. Our study objective was to develop a conceptual framework and analysis method to investigate changes in knee shape and geometry, and prospectively apply it to a sample total knee arthroplasty population. Using clinically available computed tomography and radiography imaging systems, the three-dimensional knee shape and geometry of nine patients (eight varus and one valgus) were compared before and after total knee arthroplasty. All patients had largely good outcomes after their total knee arthroplasty. Knee shape changed both visually and numerically. On average, the distal condyles were slightly higher medially and lower laterally (range: +4.5 mm to −4.4 mm), the posterior condyles extended farther out medially but not laterally (range: +1.8 to −6.4 mm), patellofemoral distance increased throughout flexion by 1.8–3.5 mm, and patellar thickness alone increased by 2.9 mm (range: 0.7–5.2 mm). External femoral rotation differed preop and postop. Joint line distance, taking cartilage into account, changed by +0.7 to −1.5 mm on average throughout flexion. Important differences in shape and geometry were seen between pre-total knee arthroplasty and post-total knee arthroplasty knees. While this is qualitatively known, this is the first study to report it quantitatively, an important precursor to identifying the reasons for the poor outcome of some patients. Using the developed protocol and visualization techniques to compare patients with good versus poor clinical outcomes could lead to changes in implant design, implant selection, component positioning, and surgical technique. Recommendations based on this sample population are provided. Intraoperative and postoperative feedback could ultimately improve patient satisfaction. Y1 - 2018 UR - http://journals.sagepub.com/eprint/ZVgNrNESA9EjIcaFWSjb/full U6 - https://doi.org/10.1177/0954411917743274 VL - 232 IS - 1 SP - 67 EP - 79 ER -