TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - Validierung eines linear elastischen Modells für die Weichgewebesimulation in der Mund-Kiefer-Gesichtschirurgie T2 - Bildverarbeitung für die Medizin (BVM) Y1 - 2001 SP - 57 EP - 61 CY - Lübeck, Germany ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian ED - Galloway, Robert T1 - Realistic prediction of individual facial emotion expressions for craniofacial surgery simulations T2 - Proc. SPIE medical Imaging 2003 Y1 - 2003 U6 - https://doi.org/10.1117/12.479584 VL - 5029 SP - 520 EP - 527 CY - San Diego, CA, USA ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - On constitutive modeling of soft tissue for the long-term prediction of cranio-maxillofacial surgery outcome T2 - International Congress Series, CARS2003, Computer Assisted Radiology and Surgery, Proceedings of the 17th International Congress and Exhibition Y1 - 2003 U6 - https://doi.org/10.1016/S0531-5131(03)00500-4 VL - 1256 SP - 343 EP - 348 ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - Draw & Cut: Intuitive 3D Osteotomy Planning on Polygonal Bone Models T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2003 U6 - https://doi.org/10.1016/S0531-5131(03)00272-3 SP - 362 EP - 369 CY - London, UK ER - TY - JOUR A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - Anatomy- and physics-based facial animation for craniofacial surgery simulations JF - Med Biol Eng Comput. Y1 - 2004 U6 - https://doi.org/10.1007/BF02344627 VL - 42(2) SP - 167 EP - 170 ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Towards Patient Specific, Anatomy Based Simulation of Facial Mimics for Surgical Nerve Rehabilitation T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2002 SP - 3 EP - 6 PB - Springer Verlag ER - TY - JOUR A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Trepczynski, Adam A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - 3D Osteotomy Planning in Cranio-Maxillofacial Surgery: Experiences and Results of Surgery Planning and Volumetric Finite-Element Soft Tissue Prediction in Three Clinical Cases JF - Computer Assisted Radiology and Surgery (CARS) Y1 - 2002 SP - 983 EP - 987 PB - Springer Verlag ER - TY - CHAP A1 - Zachow, Stefan A1 - Erdmann, Bodo A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Advances in 3D osteotomy planning with 3D soft tissue prediction T2 - Proc. 2nd International Symposium on Computer Aided Surgery around the Head, Abstract Y1 - 2004 SP - 31 CY - Bern ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian ED - K. Mun, Seong T1 - Adaptive Nonlinear Elastic FEM for Realistic Prediction of Soft Tissue in Craniofacial Surgery Simulations T2 - Proc. SPIE Medical Imaging 2002 Y1 - 2002 U6 - https://doi.org/10.1117/12.466906 VL - 4681 SP - 1 EP - 8 CY - San Diego, USA ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian ED - Mun, Seong T1 - Shape-based Modeling Approach for the Estimation of Individual Facial Mimics in Craniofacial Surgery Planning T2 - Proc. SPIE Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display Y1 - 2002 VL - 4681 SP - 242 EP - 248 CY - San Diego, USA target ER - TY - CHAP A1 - Hege, Hans-Christian A1 - Schirmacher, Hartmut A1 - Westerhoff, Malte A1 - Lamecker, Hans A1 - Prohaska, Steffen A1 - Zachow, Stefan T1 - From Image Data to Three-Dimensional Models - Case Studies on the Impact of 3D Patient Models T2 - Proceedings of the Japan Korea Computer Graphics Conference 2002 Y1 - 2002 PB - Kanazawa University CY - Kanazawa City, Ishikawa, Japan ER - TY - JOUR A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Wittmers, Antonia A1 - Weber, Britta A1 - Hege, Hans-Christian A1 - Elsholtz, Barbara A1 - Stiller, Michael T1 - Automatic segmentation of mandibles in low-dose CT-data JF - Int. J. Computer Assisted Radiology and Surgery Y1 - 2006 VL - 1(1) SP - 393 EP - 395 ER - TY - JOUR A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Zöckler, Maja T1 - Surgical treatment of craniosynostosis based on a statistical 3D-shape model JF - Int. J. Computer Assisted Radiology and Surgery Y1 - 2006 U6 - https://doi.org/10.1007/s11548-006-0024-x VL - 1(1) SP - 253 EP - 254 ER - TY - JOUR A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Computer assisted planning in cranio-maxillofacial surgery JF - Journal of Computing and Information Technology Y1 - 2006 VL - 14(1) SP - 53 EP - 64 ER - TY - JOUR A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Elsholtz, Barbara A1 - Stiller, Michael T1 - Is the course of the mandibular nerve deducible from the shape of the mandible? JF - Int. J. of Computer Assisted Radiology and Surgery Y1 - 2006 SP - 415 EP - 417 PB - Springer ER - TY - JOUR A1 - Zachow, Stefan A1 - Steinmann, Alexander A1 - Hildebrandt, Thomas A1 - Weber, Rainer A1 - Heppt, Werner T1 - CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery JF - Int. J. of Computer Assisted Radiology and Surgery Y1 - 2006 SP - 165 EP - 167 PB - Springer ER - TY - CHAP A1 - Hierl, Thomas A1 - Wollny, Gert A1 - Zachow, Stefan A1 - Klöppel, Rainer T1 - Visualisierung von Knochen und Weichteilveränderungen in der Distraktionsosteogenese des Mittelgesichtes T2 - Proc. 10. Jahrestagung der Deutschen Gesellschaft für Schädelbasischirurgie Y1 - 2002 SP - 111 EP - 116 CY - Heidelberg ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Finite-Element Simulation of Soft Tissue Deformation T2 - Computer Assisted Radiology and Surgey (CARS) Y1 - 2000 SP - 23 EP - 28 PB - Elsevier Science B.V. ER - TY - CHAP A1 - Zachow, Stefan A1 - Lueth, Tim A1 - Stalling, Detlev A1 - Hein, Andreas A1 - Klein, Martin A1 - Menneking, Horst T1 - Optimized Arrangement of Osseointegrated Implants: A Surgical Planning System for the Fixation of Facial Protheses T2 - Computer Assisted Radiology and Surgery (CARS’99) Y1 - 1999 SP - 942 EP - 946 PB - Elsevier Science B.V. ER - TY - CHAP A1 - Hein, Andreas A1 - Lueth, Tim A1 - Zachow, Stefan A1 - Stien, Malte T1 - A 2D Planning Sytem for Robot-Assisted Interventions T2 - Computer Assisted Radiology and Surgery Y1 - 1999 SP - 1049 PB - Elsevier Science B.V. ER - TY - CHAP A1 - Stalling, Detlev A1 - Seebaß, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie T2 - Bildverarbeitung für die Medizin 1999 - Algorithmen, Anwendungen Y1 - 1999 SP - 203 EP - 207 PB - Springer-Verlag, Berlin ER - TY - THES A1 - Zachow, Stefan T1 - Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes T2 - Computergestützte Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung Y1 - 2005 UR - www.dr.hut-verlag.de/titelMedizininformatik.html ER - TY - GEN A1 - Ehlke, Moritz A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Efficient projection and deformation of volumetric intensity models for accurate simulation of X-ray images N2 - We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual X-ray images generated using our novel approach with clinical data while varying the shape and density of the SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the reconstruction process. T3 - ZIB-Report - 12-40 KW - Digitally Reconstructed Radiograph (DRR), Anatomy Reconstruction, Statistical Shape and Intensity Model (SSIM), GPU acceleration Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16580 SN - 1438-0064 ER - TY - GEN A1 - Ramm, Heiko A1 - Morillo Victoria, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans T1 - Visual Support for Positioning Hearing Implants N2 - We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit. T3 - ZIB-Report - 13-53 KW - bone anchored hearing implant KW - surgery planning KW - segmentation KW - visualization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42495 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. T3 - ZIB-Report - 19-13 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72699 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. T3 - ZIB-Report - 19-06 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72704 SN - 1438-0064 N1 - Innovation Excellence Award 2020 ER - TY - CHAP A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan ED - Rea, Paul M. T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy T2 - Biomedical Visualisation N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. Y1 - 2019 SN - 978-3-030-19384-3 SN - 978-3-030-19385-0 U6 - https://doi.org/10.1007/978-3-030-19385-0_5 VL - 3 IS - 1156 SP - 67 EP - 84 PB - Springer Nature Switzerland AG ET - 1 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Schmidt, Nora Laura A1 - Lamecker, Hans A1 - Heppt, Werner A1 - Zachow, Stefan A1 - Goubergrits, Leonid T1 - The Healthy Nasal Cavity - Characteristics of Morphology and Related Airflow Based on a Statistical Shape Model Viewed from a Surgeon’s Perspective JF - Facial Plastic Surgery N2 - Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity’s mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream. KW - statistical shape model KW - nasal cavity KW - nasal breathing KW - nasal airflow KW - isthmus nasi KW - inferior turbinate Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677721 VL - 35 IS - 1 SP - 9 EP - 13 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Heppt, Werner A1 - Schmidt, Nora A1 - Goubergrits, Leonid T1 - Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery JF - Facial Plastic Surgery N2 - Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enablesmorphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient’s nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations. KW - nasal airflow simulation KW - nasal breathing KW - statistical shape model KW - diANA KW - nasal obstruction KW - rhinorespiratory homeostasis Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677720 VL - 35 IS - 1 SP - 1 EP - 8 ER - TY - CHAP A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) N2 - Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression. Y1 - 2019 U6 - https://doi.org/10.1109/ISBI.2019.8759201 SP - 40 EP - 43 ER - TY - GEN A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material) T2 - Medical Image Analysis N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. Y1 - 2019 U6 - https://doi.org/10.12752/4.ATEZ.1.0 N1 - OAI-ZIB dataset VL - 52 IS - 2 SP - 109 EP - 118 ER - TY - JOUR A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative JF - Medical Image Analysis N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data. Y1 - 2019 U6 - https://doi.org/10.1016/j.media.2018.11.009 VL - 52 IS - 2 SP - 109 EP - 118 ER - TY - JOUR A1 - Al Hajj, Hassan A1 - Sahu, Manish A1 - Lamard, Mathieu A1 - Conze, Pierre-Henri A1 - Roychowdhury, Soumali A1 - Hu, Xiaowei A1 - Marsalkaite, Gabija A1 - Zisimopoulos, Odysseas A1 - Dedmari, Muneer Ahmad A1 - Zhao, Fenqiang A1 - Prellberg, Jonas A1 - Galdran, Adrian A1 - Araujo, Teresa A1 - Vo, Duc My A1 - Panda, Chandan A1 - Dahiya, Navdeep A1 - Kondo, Satoshi A1 - Bian, Zhengbing A1 - Bialopetravicius, Jonas A1 - Qiu, Chenghui A1 - Dill, Sabrina A1 - Mukhopadyay, Anirban A1 - Costa, Pedro A1 - Aresta, Guilherme A1 - Ramamurthy, Senthil A1 - Lee, Sang-Woong A1 - Campilho, Aurelio A1 - Zachow, Stefan A1 - Xia, Shunren A1 - Conjeti, Sailesh A1 - Armaitis, Jogundas A1 - Heng, Pheng-Ann A1 - Vahdat, Arash A1 - Cochener, Beatrice A1 - Quellec, Gwenole T1 - CATARACTS: Challenge on Automatic Tool Annotation for cataRACT Surgery JF - Medical Image Analysis N2 - Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular, the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future. Y1 - 2019 U6 - https://doi.org/10.1016/j.media.2018.11.008 N1 - Best paper award - Computer Graphics Night 2020 (TU Darmstadt) VL - 52 IS - 2 SP - 24 EP - 41 PB - Elsevier ER - TY - GEN A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis. T3 - ZIB-Report - 19-05 KW - Deep Learning KW - imaging biomarker KW - radiomics KW - cartilage morphometry KW - volume assessment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71439 SN - 1438-0064 ER - TY - JOUR A1 - Hoffmann, Rene A1 - Lemanis, Robert A1 - Wulff, Lena A1 - Zachow, Stefan A1 - Lukeneder, Alexander A1 - Klug, Christian A1 - Keupp, Helmut T1 - Traumatic events in the life of the deep-sea cephalopod mollusc, the coleoid Spirula spirula JF - ScienceDirect: Deep Sea Research Part I - Oceanographic Research N2 - Here, we report on different types of shell pathologies of the enigmatic deep-sea (mesopelagic) cephalopod Spirula spirula. For the first time, we apply non-invasive imaging methods to: document trauma-induced changes in shell shapes, reconstruct the different causes and effects of these pathologies, unravel the etiology, and attempt to quantify the efficiency of the buoyancy apparatus. We have analysed 2D and 3D shell parameters from eleven shells collected as beach findings from the Canary Islands (Gran Canaria and Fuerteventura), West-Australia, and the Maldives. All shells were scanned with a nanotom-m computer tomograph. Seven shells were likely injured by predator attacks: fishes, cephalopods or crustaceans, one specimen was infested by an endoparasite (potentially Digenea) and one shell shows signs of inflammation and one shell shows large fluctuations of chamber volumes without any signs of pathology. These fluctuations are potential indicators of a stressed environment. Pathological shells represent the most deviant morphologies of a single species and can therefore be regarded as morphological end-members. The changes in the shell volume / chamber volume ratio were assessed in order to evaluate the functional tolerance of the buoyancy apparatus showing that these had little effect. Y1 - 2018 U6 - https://doi.org/10.1016/j.dsr.2018.10.007 VL - 142 IS - 12 SP - 127 EP - 144 ER - TY - GEN A1 - Tycowicz, Christoph von A1 - Ambellan, Felix A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - A Riemannian Statistical Shape Model using Differential Coordinates N2 - We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders. T3 - ZIB-Report - 16-69 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61175 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6485 SN - 1438-0064 ER - TY - JOUR A1 - Lemanis, Robert A1 - Zachow, Stefan A1 - Hoffmann, René T1 - Comparative cephalopod shell strength and the role of septum morphology on stress distribution JF - PeerJ N2 - The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio used to characterize septal morphology in the septal strength index and in calculations of tensile strength of nacre are likely insufficient. A better understanding of the material properties of cephalopod nacre may allow the estimation of maximum depth limits of shelled cephalopods through finite element analysis. Y1 - 2016 U6 - https://doi.org/10.7717/peerj.2434 VL - 4 SP - e2434 ER - TY - CHAP A1 - Grewe, Carl Martin A1 - Zachow, Stefan T1 - Fully Automated and Highly Accurate Dense Correspondence for Facial Surfaces T2 - Computer Vision – ECCV 2016 Workshops N2 - We present a novel framework for fully automated and highly accurate determination of facial landmarks and dense correspondence, e.g. a topologically identical mesh of arbitrary resolution, across the entire surface of 3D face models. For robustness and reliability of the proposed approach, we are combining 2D landmark detectors and 3D statistical shape priors with a variational matching method. Instead of matching faces in the spatial domain only, we employ image registration to align the 2D parametrization of the facial surface to a planar template we call the Unified Facial Parameter Domain (ufpd). This allows us to simultaneously match salient photometric and geometric facial features using robust image similarity measures while reasonably constraining geometric distortion in regions with less significant features. We demonstrate the accuracy of the dense correspondence established by our framework on the BU3DFE database with 2500 facial surfaces and show, that our framework outperforms current state-of-the-art methods with respect to the fully automated location of facial landmarks. Y1 - 2016 U6 - https://doi.org/10.1007/978-3-319-48881-3_38 VL - 9914 SP - 552 EP - 568 PB - Springer International Publishing ER - TY - JOUR A1 - Bernard, Florian A1 - Salamanca, Luis A1 - Thunberg, Johan A1 - Tack, Alexander A1 - Jentsch, Dennis A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hertel, Frank A1 - Goncalves, Jorge A1 - Gemmar, Peter T1 - Shape-aware Surface Reconstruction from Sparse Data JF - arXiv N2 - The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods. Y1 - 2016 SP - 1602.08425v1 ER - TY - JOUR A1 - Bernard, Florian A1 - Salamanca, Luis A1 - Thunberg, Johan A1 - Tack, Alexander A1 - Jentsch, Dennis A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hertel, Frank A1 - Goncalves, Jorge A1 - Gemmar, Peter T1 - Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds JF - Medical Image Analysis N2 - The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. Y1 - 2017 UR - http://www.sciencedirect.com/science/article/pii/S1361841517300233 U6 - https://doi.org/10.1016/j.media.2017.02.005 VL - 38 SP - 77 EP - 89 ER - TY - JOUR A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - A nonlinear elastic soft tissue model for craniofacial surgery simulations JF - ESAIM, Proc. Y1 - 2002 U6 - https://doi.org/10.1051/proc:2002011 VL - 12 SP - 61 EP - 66 ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - A nonlinear soft tissue model for craniofacial surgery simulations T2 - Proc. of Modeling and Simulation for Computer-aided Medicine and Surgery (MS4CMS Y1 - 2002 PB - INRIA CY - Paris, France ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian T1 - Biomechanical modeling of individual facial emotion expressions T2 - Proc. of Visualization, Imaging, and Image Processing (VIIP) Y1 - 2002 SP - 7 EP - 11 CY - Malaga, Spain ER - TY - CHAP A1 - Gladilin, Evgeny A1 - Zachow, Stefan A1 - Deuflhard, Peter A1 - Hege, Hans-Christian ED - Meiler, M. ED - Saupe, D. ED - Krugel, F. ED - Handels, H. ED - Lehmann, T. T1 - Biomechanisches Modell zur Abschätzung der individuellen Gesichtsmimik T2 - Proc.of Workshop Bildverarbeitung für die Medizin (BVM) Y1 - 2002 SP - 25 EP - 28 CY - Leipzig, Germany ER - TY - CHAP A1 - Zachow, Stefan A1 - Weiser, Martin A1 - Hege, Hans-Christian A1 - Deuflhard, Peter ED - Payan, Y. T1 - Soft Tissue Prediction in Computer Assisted Maxillofacial Surgery Planning T2 - Biomechanics Applied to Computer Assisted Surgery Y1 - 2005 SP - 277 EP - 298 PB - Research Signpost ER - TY - CHAP A1 - Zachow, Stefan A1 - Weiser, Martin A1 - Deuflhard, Peter ED - Niederlag, Wolfgang ED - Lemke, Heinz ED - Meixensberger, Jürgen ED - Baumann, Michael T1 - Modellgestützte Operationsplanung in der Kopfchirurgie T2 - Modellgestützte Therapie Y1 - 2008 SP - 140 EP - 156 PB - Health Academy ER - TY - JOUR A1 - Zeilhofer, Hans-Florian A1 - Zachow, Stefan A1 - Fairley, Jeffrey A1 - Sader, Robert A1 - Deuflhard, Peter T1 - Treatment Planning and Simulation in Craniofacial Surgery with Virtual Reality Techiques JF - Journal of Cranio-Maxillofacial Surgery Y1 - 2000 VL - 28 (Suppl. 1) SP - 82 ER - TY - JOUR A1 - Taylor, William R. A1 - Pöpplau, Berry M. A1 - König, Christian A1 - Ehrig, Rainald A1 - Zachow, Stefan A1 - Duda, Georg A1 - Heller, Markus O. T1 - The medial-lateral force distribution in the ovine stifle joint during walking JF - Journal of Orthopaedic Research Y1 - 2011 U6 - https://doi.org/10.1002/jor.21254 VL - 29 IS - 4 SP - 567 EP - 571 ER - TY - JOUR A1 - Lamas-Rodríguez, Julián A1 - Heras, Dora Blanco A1 - Argüello, Francisco A1 - Kainmüller, Dagmar A1 - Zachow, Stefan A1 - Bóo, Montserrat T1 - GPU-accelerated level-set segmentation JF - Journal of Real-Time Image Processing Y1 - 2013 UR - http://dx.doi.org/10.1007/s11554-013-0378-6 U6 - https://doi.org/10.1007/s11554-013-0378-6 SN - 1861-8200 SP - 1 EP - 15 PB - Springer Berlin Heidelberg ER - TY - JOUR A1 - Hoffmann, René A1 - Schultz, Julia A. A1 - Schellhorn, Rico A1 - Rybacki, Erik A1 - Keupp, Helmut A1 - Gerden, S. R. A1 - Lemanis, Robert A1 - Zachow, Stefan T1 - Non-invasive imaging methods applied to neo- and paleontological cephalopod research JF - Biogeosciences N2 - Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied. Y1 - 2014 U6 - https://doi.org/10.5194/bg-11-2721-2014 N1 - To access the corresponding discussion paper go to www.biogeosciences-discuss.net/10/18803/2013/ - Biogeosciences Discuss., 10, 18803-18851, 2013 VL - 11 IS - 10 SP - 2721 EP - 2739 ER -