TY - JOUR A1 - Pimentel, Pedro A1 - Szengel, Angelika A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Estacio, Laura A1 - Doenitz, Christian A1 - Ramm, Heiko ED - Li, Jianning ED - Egger, Jan T1 - Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks BT - First Challenge, AutoImplant 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings JF - Towards the Automatization of Cranial Implant Design in Cranioplasty N2 - We present an automated method for extrapolating missing regions in label data of the skull in an anatomically plausible manner. The ultimate goal is to design patient-speci� c cranial implants for correcting large, arbitrarily shaped defects of the skull that can, for example, result from trauma of the head. Our approach utilizes a 3D statistical shape model (SSM) of the skull and a 2D generative adversarial network (GAN) that is trained in an unsupervised fashion from samples of healthy patients alone. By � tting the SSM to given input labels containing the skull defect, a First approximation of the healthy state of the patient is obtained. The GAN is then applied to further correct and smooth the output of the SSM in an anatomically plausible manner. Finally, the defect region is extracted using morphological operations and subtraction between the extrapolated healthy state of the patient and the defective input labels. The method is trained and evaluated based on data from the MICCAI 2020 AutoImplant challenge. It produces state-of-the art results on regularly shaped cut-outs that were present in the training and testing data of the challenge. Furthermore, due to unsupervised nature of the approach, the method generalizes well to previously unseen defects of varying shapes that were only present in the hidden test dataset. Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-64327-0_3 N1 - Best Paper Award VL - 12439 SP - 16 EP - 27 PB - Springer International Publishing ET - 1 ER - TY - JOUR A1 - Oeltze-Jaffra, Steffen A1 - Meuschke, Monique A1 - Neugebauer, Mathias A1 - Saalfeld, Sylvia A1 - Lawonn, Kai A1 - Janiga, Gabor A1 - Hege, Hans-Christian A1 - Zachow, Stefan A1 - Preim, Bernhard T1 - Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends, and Future Challenges JF - Computer Graphics Forum N2 - Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics. Y1 - 2019 U6 - https://doi.org/10.1111/cgf.13394 VL - 38 IS - 1 SP - 87 EP - 125 PB - Wiley ER - TY - GEN A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. T3 - ZIB-Report - 19-13 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72699 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-32251-9_3 VL - 11767 SP - 21 EP - 29 PB - Springer ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Schmidt, Nora Laura A1 - Lamecker, Hans A1 - Heppt, Werner A1 - Zachow, Stefan A1 - Goubergrits, Leonid T1 - The Healthy Nasal Cavity - Characteristics of Morphology and Related Airflow Based on a Statistical Shape Model Viewed from a Surgeon’s Perspective JF - Facial Plastic Surgery N2 - Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity’s mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream. KW - statistical shape model KW - nasal cavity KW - nasal breathing KW - nasal airflow KW - isthmus nasi KW - inferior turbinate Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677721 VL - 35 IS - 1 SP - 9 EP - 13 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Bruening, Jan Joris A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Heppt, Werner A1 - Schmidt, Nora A1 - Goubergrits, Leonid T1 - Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery JF - Facial Plastic Surgery N2 - Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enablesmorphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient’s nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations. KW - nasal airflow simulation KW - nasal breathing KW - statistical shape model KW - diANA KW - nasal obstruction KW - rhinorespiratory homeostasis Y1 - 2019 U6 - https://doi.org/10.1055/s-0039-1677720 VL - 35 IS - 1 SP - 1 EP - 8 ER - TY - CHAP A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan ED - Rea, Paul M. T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy T2 - Biomedical Visualisation N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. Y1 - 2019 SN - 978-3-030-19384-3 SN - 978-3-030-19385-0 U6 - https://doi.org/10.1007/978-3-030-19385-0_5 VL - 3 IS - 1156 SP - 67 EP - 84 PB - Springer Nature Switzerland AG ET - 1 ER - TY - CHAP A1 - Ambellan, Felix A1 - Tack, Alexander A1 - Ehlke, Moritz A1 - Zachow, Stefan T1 - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - Medical Imaging with Deep Learning N2 - We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging, that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The method is evaluated on data of the MICCAI grand challenge "Segmentation of Knee Images 2010". For the first time an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy. In conclusion, combining of anatomical knowledge using SSMs with localized classification via CNNs results in a state-of-the-art segmentation method. Y1 - 2018 ER - TY - GEN A1 - Sahu, Manish A1 - Dill, Sabrina A1 - Mukhopadyay, Anirban A1 - Zachow, Stefan T1 - Surgical Tool Presence Detection for Cataract Procedures N2 - This article outlines the submission to the CATARACTS challenge for automatic tool presence detection [1]. Our approach for this multi-label classification problem comprises labelset-based sampling, a CNN architecture and temporal smothing as described in [3], which we call ZIB-Res-TS. T3 - ZIB-Report - 18-28 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69110 SN - 1438-0064 ER - TY - JOUR A1 - Al Hajj, Hassan A1 - Sahu, Manish A1 - Lamard, Mathieu A1 - Conze, Pierre-Henri A1 - Roychowdhury, Soumali A1 - Hu, Xiaowei A1 - Marsalkaite, Gabija A1 - Zisimopoulos, Odysseas A1 - Dedmari, Muneer Ahmad A1 - Zhao, Fenqiang A1 - Prellberg, Jonas A1 - Galdran, Adrian A1 - Araujo, Teresa A1 - Vo, Duc My A1 - Panda, Chandan A1 - Dahiya, Navdeep A1 - Kondo, Satoshi A1 - Bian, Zhengbing A1 - Bialopetravicius, Jonas A1 - Qiu, Chenghui A1 - Dill, Sabrina A1 - Mukhopadyay, Anirban A1 - Costa, Pedro A1 - Aresta, Guilherme A1 - Ramamurthy, Senthil A1 - Lee, Sang-Woong A1 - Campilho, Aurelio A1 - Zachow, Stefan A1 - Xia, Shunren A1 - Conjeti, Sailesh A1 - Armaitis, Jogundas A1 - Heng, Pheng-Ann A1 - Vahdat, Arash A1 - Cochener, Beatrice A1 - Quellec, Gwenole T1 - CATARACTS: Challenge on Automatic Tool Annotation for cataRACT Surgery JF - Medical Image Analysis N2 - Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular, the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future. Y1 - 2019 U6 - https://doi.org/10.1016/j.media.2018.11.008 N1 - Best paper award - Computer Graphics Night 2020 (TU Darmstadt) VL - 52 IS - 2 SP - 24 EP - 41 PB - Elsevier ER -