TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-32251-9_3 VL - 11767 SP - 21 EP - 29 PB - Springer ER - TY - CHAP A1 - Estacio, Laura A1 - Ehlke, Moritz A1 - Tack, Alexander A1 - Castro-Gutierrez, Eveling A1 - Lamecker, Hans A1 - Mora, Rensso A1 - Zachow, Stefan T1 - Unsupervised Detection of Disturbances in 2D Radiographs T2 - 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) N2 - We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data. Y1 - 2021 U6 - https://doi.org/10.1109/ISBI48211.2021.9434091 SP - 367 EP - 370 ER - TY - JOUR A1 - Sahu, Manish A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Simulation-to-Real domain adaptation with teacher-student learning for endoscopic instrument segmentation JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods We introduce a teacher–student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation. Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical instrument in the annotation scarce setting. Y1 - 2021 U6 - https://doi.org/10.1007/s11548-021-02383-4 N1 - Honorary Mention: Machine Learning for Computer-Assisted Intervention (CAI) Award @IPCAI2021 N1 - Honorary Mention: Audience Award for Best Innovation @IPCAI2021 VL - 16 SP - 849 EP - 859 PB - Springer Nature ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Bayat, Amirhossein A1 - Husseini, Malek E. A1 - Löffler, Maximilian A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Wei, Qingyue A1 - Brown, Kevin A1 - Wolf, Matthias A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images JF - arXiv Y1 - 2020 ER - TY - JOUR A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms JF - Medical Image Analysis N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102178 VL - 73 ER - TY - JOUR A1 - Trepczynski, Adam A1 - Kneifel, Paul A1 - Heyland, Mark A1 - Leskovar, Marko A1 - Moewis, Philippe A1 - Damm, Philipp A1 - Taylor, William R. A1 - Zachow, Stefan A1 - Duda, Georg N. T1 - Impact of the external knee flexion moment on patello-femoral loading derived from in vivo loads and kinematics JF - Frontiers in Bioengineering and Biotechnology N2 - Introduction: Anterior knee pain and other patello-femoral (PF) complications frequently limit the success of total knee arthroplasty as the final treatment of end stage osteoarthritis. However, knowledge about the in-vivo loading conditions at the PF joint remains limited, as no direct measurements are available. We hypothesised that the external knee flexion moment (EFM) is highly predictive of the PF contact forces during activities with substantial flexion of the loaded knee. Materials and methods: Six patients (65–80 years, 67–101 kg) with total knee arthroplasty (TKA) performed two activities of daily living: sit-stand-sit and squat. Tibio-femoral (TF) contact forces were measured in vivo using instrumented tibial components, while synchronously internal TF and PF kinematics were captured with mobile fluoroscopy. The measurements were used to compute PF contact forces using patient specific musculoskeletal models. The relationship between the EFM and the PF contact force was quantified using linear regression. Results: Mean peak TF contact forces of 1.97–3.24 times body weight (BW) were found while peak PF forces reached 1.75 to 3.29 times body weight (BW). The peak EFM ranged from 3.2 to 5.9 %BW times body height, and was a good predictor of the PF contact force (R2 = 0.95 and 0.88 for sit-stand-sit and squat, respectively). Discussion: The novel combination of in vivo TF contact forces and internal patellar kinematics enabled a reliable assessment of PF contact forces. The results of the regression analysis suggest that PF forces can be estimated based solely on the EFM from quantitative gait analysis. Our study also demonstrates the relevance of PF contact forces, which reach magnitudes similar to TF forces during activities of daily living. Y1 - 2024 U6 - https://doi.org/10.3389/fbioe.2024.1473951 SN - 2296-4185 VL - 12/2024 PB - Frontiers Media SA ER - TY - JOUR A1 - Komnik, Igor A1 - Funken, Johannes A1 - Zachow, Stefan A1 - Schmidt-Wiethoff, Rüdiger A1 - Ellermann, Andree A1 - Potthast, Wolfgang T1 - Surgical planning in HTO – Alternative approaches to the Fujisawa gold-standard JF - Technology and Health Care N2 - BACKGROUND: Presurgical planning of the correction angle plays a decisive role in a high tibial osteotomy, affecting the loading situation in the knee affected by osteoarthritis. The planning approach by Fujisawa et al. aims to adjust the weight-bearing line to achieve an optimal knee joint load distribution. While this method is accessible, it may not fully consider the complexity of individual dynamic knee-loading profiles. This review aims to disclose existing alternative HTO planning methods that do not follow Fujisawa’s standard. METHODS: PubMed, Web of Science and CENTRAL databases were screened, focusing on HTO research in combination with alternative planning approaches. RESULTS: Eight out of 828 studies were included, with seven simulation studies based on finite element analysis and multi-body dynamics. The planning approaches incorporated gradual degrees of realignment parameters (weight-bearing line shift, medial proximal tibial angle, hip- knee-ankle, knee joint line orientation), simulating their effect on knee kinematics, contact force/stress, Von Mises and shear stress. Two studies proposed implementing individual correction magnitudes derived from preoperatively predicted knee adduction moments. CONCLUSION: Most planning methods depend on static alignment assessments, neglecting an adequate loading-depending profile. They are confined to their conceptual phases, making the associated planning methods unviable for current clinical use. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-98227 ER - TY - GEN A1 - Stalling, Detlev A1 - Seebass, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie N2 - Polygonale Schädelmodelle bilden ein wichtiges Hilfsmittel für computergestützte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgelösten CT-Datensätzen erzeugt werden können. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten möglich wird. Die Verwendung eines speziellen Transparenzmodells ermöglicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und läßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen. T3 - ZIB-Report - TR-98-05 KW - Isoflächen KW - Simplifizierung KW - Transparenzen Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5661 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Mathematics in Facial Surgery JF - AMS Notices Y1 - 2006 VL - 53 IS - 9 SP - 1012 EP - 1016 ER -