TY - JOUR A1 - Amiranashvili, Tamaz A1 - Lüdke, David A1 - Li, Hongwei Bran A1 - Zachow, Stefan A1 - Menze, Bjoern T1 - Learning continuous shape priors from sparse data with neural implicit functions JF - Medical Image Analysis N2 - Statistical shape models are an essential tool for various tasks in medical image analysis, including shape generation, reconstruction and classification. Shape models are learned from a population of example shapes, which are typically obtained through segmentation of volumetric medical images. In clinical practice, highly anisotropic volumetric scans with large slice distances are prevalent, e.g., to reduce radiation exposure in CT or image acquisition time in MR imaging. For existing shape modeling approaches, the resolution of the emerging model is limited to the resolution of the training shapes. Therefore, any missing information between slices prohibits existing methods from learning a high-resolution shape prior. We propose a novel shape modeling approach that can be trained on sparse, binary segmentation masks with large slice distances. This is achieved through employing continuous shape representations based on neural implicit functions. After training, our model can reconstruct shapes from various sparse inputs at high target resolutions beyond the resolution of individual training examples. We successfully reconstruct high-resolution shapes from as few as three orthogonal slices. Furthermore, our shape model allows us to embed various sparse segmentation masks into a common, low-dimensional latent space — independent of the acquisition direction, resolution, spacing, and field of view. We show that the emerging latent representation discriminates between healthy and pathological shapes, even when provided with sparse segmentation masks. Lastly, we qualitatively demonstrate that the emerging latent space is smooth and captures characteristic modes of shape variation. We evaluate our shape model on two anatomical structures: the lumbar vertebra and the distal femur, both from publicly available datasets. Y1 - 2024 U6 - https://doi.org/10.1016/j.media.2024.103099 VL - 94 SP - 103099 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Riehm, Felix A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - VoxSculpt: An Open-Source Voxel Library for Tomographic Volume Sculpting in Virtual Reality T2 - 2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023 N2 - Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality. Y1 - 2023 U6 - https://doi.org/10.1109/ICVR57957.2023.10169420 SP - 515 EP - 523 ER - TY - JOUR A1 - Wagendorf, Oliver A1 - Nahles, Susanne A1 - Vach, Kirstin A1 - Kernen, Florian A1 - Zachow, Stefan A1 - Heiland, Max A1 - Flügge, Tabea T1 - The impact of teeth and dental restorations on gray value distribution in cone-beam computer tomography - a pilot study JF - International Journal of Implant Dentistry N2 - Purpose: To investigate the influence of teeth and dental restorations on the facial skeleton's gray value distributions in cone-beam computed tomography (CBCT). Methods: Gray value selection for the upper and lower jaw segmentation was performed in 40 patients. In total, CBCT data of 20 maxillae and 20 mandibles, ten partial edentulous and ten fully edentulous in each jaw, respectively, were evaluated using two different gray value selection procedures: manual lower threshold selection and automated lower threshold selection. Two sample t tests, linear regression models, linear mixed models, and Pearson's correlation coefficients were computed to evaluate the influence of teeth, dental restorations, and threshold selection procedures on gray value distributions. Results: Manual threshold selection resulted in significantly different gray values in the fully and partially edentulous mandible. (p = 0.015, difference 123). In automated threshold selection, only tendencies to different gray values in fully edentulous compared to partially edentulous jaws were observed (difference: 58–75). Significantly different gray values were evaluated for threshold selection approaches, independent of the dental situation of the analyzed jaw. No significant correlation between the number of teeth and gray values was assessed, but a trend towards higher gray values in patients with more teeth was noted. Conclusions: Standard gray values derived from CT imaging do not apply for threshold-based bone segmentation in CBCT. Teeth influence gray values and segmentation results. Inaccurate bone segmentation may result in ill-fitting surgical guides produced on CBCT data and misinterpreting bone density, which is crucial for selecting surgical protocols. Y1 - 2023 U6 - https://doi.org/10.1186/s40729-023-00493-z VL - 9 IS - 27 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - Design Challenges and Opportunities of Fossil Preparation Tools and Methods T2 - Proceedings of the 20th International Conference on Culture and Computer Science: Code and Materiality N2 - Fossil preparation is the activity of processing paleontological specimens for research and exhibition purposes. In addition to traditional mechanical extraction of fossils, preparation presently comprises non-destructive digital methods that are part of a relatively new field, namely virtual paleontology. Despite significant technological advances, both traditional and digital preparation remain cumbersome and time-consuming endeavors. However, this field has received scarce attention from a human-computer interaction perspective. The present study aims to elucidate the state-of-the-art for paleontological fossil preparation in order to determine its main challenges and start a conversation regarding opportunities for creating novel designs that tackle the field's current issues. We conducted a qualitative study involving both technical preparators and virtual paleontologists. The study was divided into two parts: First, we assembled technical preparators and paleontology researchers in a focus group session to discuss their workflows, obtain a preliminary understanding of their issues, and ideate solutions based on their counterparts' workflows. Next, we conducted a series of contextual inquiries involving direct observation and semi-structured in-depth interviews. We transcribed our recordings and examined the data through theoretical and inductive thematic analysis, clustering emerging themes and applying concepts from human-computer interaction and related fields. Our findings report on challenges faced by traditional and digital fossil preparators and potential opportunities to improve their tools and workflows. We contribute with a novel analysis of fossil preparation from an HCI perspective. Y1 - 2023 U6 - https://doi.org/10.1145/3623462.3623470 PB - Association for Computing Machinery CY - New York, NY, USA ER - TY - CHAP A1 - Lüdke, David A1 - Amiranashvili, Tamaz A1 - Ambellan, Felix A1 - Ezhov, Ivan A1 - Menze, Bjoern A1 - Zachow, Stefan T1 - Landmark-free Statistical Shape Modeling via Neural Flow Deformations T2 - Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 N2 - Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm). Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-16434-7_44 VL - 13432 PB - Springer, Cham ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - An Immersive Virtual Paleontology Application T2 - 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022 N2 - Virtual paleontology studies digital fossils through data analysis and visualization systems. The discipline is growing in relevance for the evident advantages of non-destructive imaging techniques over traditional paleontological methods, and it has made significant advancements during the last few decades. However, virtual paleontology still faces a number of technological challenges, amongst which are interaction shortcomings of image segmentation applications. Whereas automated segmentation methods are seldom applicable to fossil datasets, manual exploration of these specimens is extremely time-consuming as it impractically delves into three-dimensional data through two-dimensional visualization and interaction means. This paper presents an application that employs virtual reality and haptics to virtual paleontology in order to evolve its interaction paradigms and address some of its limitations. We provide a brief overview of the challenges faced by virtual paleontology practitioners, a description of our immersive virtual paleontology prototype, and the results of a heuristic evaluation of our design. Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-06249-0 SP - 478 EP - 481 ER - TY - JOUR A1 - Glatzeder, Korbinian A1 - Komnik, Igor A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - Potthast, Wolfgang T1 - Dynamic pressure analysis of novel interpositional knee spacer implants in 3D-printed human knee models JF - Scientific Reports N2 - Alternative treatment methods for knee osteoarthritis (OA) are in demand, to delay the young (< 50 Years) patient’s need for osteotomy or knee replacement. Novel interpositional knee spacers shape based on statistical shape model (SSM) approach and made of polyurethane (PU) were developed to present a minimally invasive method to treat medial OA in the knee. The implant should be supposed to reduce peak strains and pain, restore the stability of the knee, correct the malalignment of a varus knee and improve joint function and gait. Firstly, the spacers were tested in artificial knee models. It is assumed that by application of a spacer, a significant reduction in stress values and a significant increase in the contact area in the medial compartment of the knee will be registered. Biomechanical analysis of the effect of novel interpositional knee spacer implants on pressure distribution in 3D-printed knee model replicas: the primary purpose was the medial joint contact stress-related biomechanics. A secondary purpose was a better understanding of medial/lateral redistribution of joint loading. Six 3D printed knee models were reproduced from cadaveric leg computed tomography. Each of four spacer implants was tested in each knee geometry under realistic arthrokinematic dynamic loading conditions, to examine the pressure distribution in the knee joint. All spacers showed reduced mean stress values by 84–88% and peak stress values by 524–704% in the medial knee joint compartment compared to the non-spacer test condition. The contact area was enlarged by 462–627% as a result of the inserted spacers. Concerning the appreciable contact stress reduction and enlargement of the contact area in the medial knee joint compartment, the premises are in place for testing the implants directly on human knee cadavers to gain further insights into a possible tool for treating medial knee osteoarthritis. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-20463-6 VL - 12 ER - TY - CHAP A1 - Amiranashvili, Tamaz A1 - Lüdke, David A1 - Li, Hongwei A1 - Menze, Bjoern A1 - Zachow, Stefan T1 - Learning Shape Reconstruction from Sparse Measurements with Neural Implicit Functions T2 - Medical Imaging with Deep Learning N2 - Reconstructing anatomical shapes from sparse or partial measurements relies on prior knowledge of shape variations that occur within a given population. Such shape priors are learned from example shapes, obtained by segmenting volumetric medical images. For existing models, the resolution of a learned shape prior is limited to the resolution of the training data. However, in clinical practice, volumetric images are often acquired with highly anisotropic voxel sizes, e.g. to reduce image acquisition time in MRI or radiation exposure in CT imaging. The missing shape information between the slices prohibits existing methods to learn a high-resolution shape prior. We introduce a method for high-resolution shape reconstruction from sparse measurements without relying on high-resolution ground truth for training. Our method is based on neural implicit shape representations and learns a continuous shape prior only from highly anisotropic segmentations. Furthermore, it is able to learn from shapes with a varying field of view and can reconstruct from various sparse input configurations. We demonstrate its effectiveness on two anatomical structures: vertebra and femur, and successfully reconstruct high-resolution shapes from sparse segmentations, using as few as three orthogonal slices. Y1 - 2022 ER - TY - JOUR A1 - Grewe, Carl Martin A1 - Liu, Tuo A1 - Hildebrandt, Andrea A1 - Zachow, Stefan T1 - The Open Virtual Mirror Framework for Enfacement Illusions - Enhancing the Sense of Agency With Avatars That Imitate Facial Expressions JF - Behavior Research Methods Y1 - 2022 U6 - https://doi.org/10.3758/s13428-021-01761-9 PB - Springer ER - TY - JOUR A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms JF - Medical Image Analysis N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102178 VL - 73 ER - TY - JOUR A1 - Sahu, Manish A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Simulation-to-Real domain adaptation with teacher-student learning for endoscopic instrument segmentation JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods We introduce a teacher–student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation. Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical instrument in the annotation scarce setting. Y1 - 2021 U6 - https://doi.org/10.1007/s11548-021-02383-4 N1 - Honorary Mention: Machine Learning for Computer-Assisted Intervention (CAI) Award @IPCAI2021 N1 - Honorary Mention: Audience Award for Best Innovation @IPCAI2021 VL - 16 SP - 849 EP - 859 PB - Springer Nature ER - TY - CHAP A1 - Estacio, Laura A1 - Ehlke, Moritz A1 - Tack, Alexander A1 - Castro-Gutierrez, Eveling A1 - Lamecker, Hans A1 - Mora, Rensso A1 - Zachow, Stefan T1 - Unsupervised Detection of Disturbances in 2D Radiographs T2 - 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) N2 - We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data. Y1 - 2021 U6 - https://doi.org/10.1109/ISBI48211.2021.9434091 SP - 367 EP - 370 ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. T3 - ZIB-Report - 21-09 KW - Statistical shape analysis KW - Osteoarthritis KW - Geometric statistics KW - Riemannian manifolds Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81930 SN - 1438-0064 ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis T2 - Proc. Information Processing in Medical Imaging (IPMI) N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-78191-0_14 SP - 177 EP - 188 ER - TY - JOUR A1 - Hembus, Jessica A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - Bader, Rainer T1 - Establishment of a rolling-sliding test bench to analyze abrasive wear propagation of different bearing materials for knee implants JF - Applied Sciences N2 - Currently, new materials for knee implants need to be extensively and expensive tested in a knee wear simulator in a realized design. However, using a rolling-sliding test bench, these materials can be examined under the same test conditions but with simplified geometries. In the present study, the test bench was optimized, and forces were adapted to the physiological contact pressure in the knee joint using the available geometric parameters. Various polymers made of polyethylene and polyurethane articulating against test wheels made of cobalt-chromium and aluminum titanate were tested in the test bench using adapted forces based on ISO 14243-1. Polyurethane materials showed distinctly higher wear rates than polyethylene materials and showed inadequate wear resistance for use as knee implant material. Thus, the rolling-sliding test bench is an adaptable test setup for evaluating newly developed bearing materials for knee implants. It combines the advantages of screening and simulator tests and allows testing of various bearing materials under physiological load and tribological conditions of the human knee joint. The wear behavior of different material compositions and the influence of surface geometry and quality can be initially investigated without the need to produce complex implant prototypes of total knee endoprosthesis or interpositional spacers. Y1 - 2021 U6 - https://doi.org/10.3390/app11041886 VL - 11 IS - 4 ER - TY - JOUR A1 - Li, Jianning A1 - Pimentel, Pedro A1 - Szengel, Angelika A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Estacio, Laura A1 - Doenitz, Christian A1 - Ramm, Heiko A1 - Shi, Haochen A1 - Chen, Xiaojun A1 - Matzkin, Franco A1 - Newcombe, Virginia A1 - Ferrante, Enzo A1 - Jin, Yuan A1 - Ellis, David G. A1 - Aizenberg, Michele R. A1 - Kodym, Oldrich A1 - Spanel, Michal A1 - Herout, Adam A1 - Mainprize, James G. A1 - Fishman, Zachary A1 - Hardisty, Michael R. A1 - Bayat, Amirhossein A1 - Shit, Suprosanna A1 - Wang, Bomin A1 - Liu, Zhi A1 - Eder, Matthias A1 - Pepe, Antonio A1 - Gsaxner, Christina A1 - Alves, Victor A1 - Zefferer, Ulrike A1 - von Campe, Cord A1 - Pistracher, Karin A1 - Schäfer, Ute A1 - Schmalstieg, Dieter A1 - Menze, Bjoern H. A1 - Glocker, Ben A1 - Egger, Jan T1 - AutoImplant 2020 - First MICCAI Challenge on Automatic Cranial Implant Design JF - IEEE Transactions on Medical Imaging N2 - The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design. Based on feedback from collaborating neurosurgeons, this paper concludes by stating open issues and post-challenge requirements for intra-operative use. Y1 - 2021 U6 - https://doi.org/10.1109/TMI.2021.3077047 SN - 0278-0062 VL - 40 IS - 9 SP - 2329 EP - 2342 ER - TY - JOUR A1 - Picht, Thomas A1 - Le Calve, Maxime A1 - Tomasello, Rosario A1 - Fekonja, Lucius A1 - Gholami, Mohammad Fardin A1 - Bruhn, Matthias A1 - Zwick, Carola A1 - Rabe, Jürgen P. A1 - Müller-Birn, Claudia A1 - Vajkoczy, Peter A1 - Sauer, Igor M. A1 - Zachow, Stefan A1 - Nyakatura, John A. A1 - Ribault, Patricia A1 - Pulvermüller, Friedemann T1 - A note on neurosurgical resection and why we need to rethink cutting JF - Neurosurgery Y1 - 2021 U6 - https://doi.org/10.1093/neuros/nyab326 VL - 89 IS - 5 SP - 289 EP - 291 ER - TY - GEN A1 - Tack, Alexander A1 - Ambellan, Felix A1 - Zachow, Stefan T1 - Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative (Supplementary Material) T2 - PLOS One N2 - Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA A fully automated method is employed to segment six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between healthy and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Substantial agreement with weighted kappa values of 0.73, 0.73, and 0.79 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.60 and 0.75 for prediction of incident KOA and TKR within 5 years, respectively. Quantitative features from automated segmentations yield excellent results for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features as KOA biomarkers should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication. Y1 - 2021 U6 - https://doi.org/10.12752/8328 N1 - 46,996 automated segmentations for data from the OAI database. VL - 16 IS - 10 ER - TY - GEN A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. T3 - ZIB-Report - 21-33 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84415 SN - 1438-0064 ER -