TY - JOUR A1 - Zinser, Max A1 - Zachow, Stefan A1 - Sailer, Hermann T1 - Bimaxillary "rotation advancement" procedures in patients with obstructive sleep apnea: A 3-dimensional airway analysis of morphological changes JF - International Journal of Oral & Maxillofacial Surgery Y1 - 2013 U6 - https://doi.org/10.1016/j.ijom.2012.08.002 VL - 42 IS - 5 SP - 569 EP - 578 ER - TY - CHAP A1 - Zilske, Michael A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Adaptive Remeshing of Non-Manifold Surfaces T2 - Eurographics 2008 Annex to the Conf. Proc. Y1 - 2008 SP - 207 EP - 211 ER - TY - GEN A1 - Zilske, Michael A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Adaptive Remeshing of Non-Manifold Surfaces N2 - We present a unified approach for consistent remeshing of arbitrary non-manifold triangle meshes with additional user-defined feature lines, which together form a feature skeleton. Our method is based on local operations only and produces meshes of high regularity and triangle quality while preserving the geometry as well as topology of the feature skeleton and the input mesh. T3 - ZIB-Report - 07-01 KW - remeshing KW - non-manifold KW - mesh quality optimization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9445 ER - TY - JOUR A1 - Zeilhofer, Hans-Florian A1 - Zachow, Stefan A1 - Fairley, Jeffrey A1 - Sader, Robert A1 - Deuflhard, Peter T1 - Treatment Planning and Simulation in Craniofacial Surgery with Virtual Reality Techiques JF - Journal of Cranio-Maxillofacial Surgery Y1 - 2000 VL - 28 (Suppl. 1) SP - 82 ER - TY - JOUR A1 - Zahn, Robert A1 - Grotjohann, Sarah A1 - Ramm, Heiko A1 - Zachow, Stefan A1 - Putzier, Michael A1 - Perka, Carsten A1 - Tohtz, Stephan T1 - Pelvic tilt compensates for increased acetabular anteversion JF - International Orthopaedics N2 - Pelvic tilt determines functional orientation of the acetabulum. In this study, we investigated the interaction of pelvic tilt and functional acetabular anteversion (AA) in supine position. Y1 - 2015 U6 - https://doi.org/10.1007/s00264-015-2949-6 VL - 40 IS - 8 SP - 1571 EP - 1575 ER - TY - JOUR A1 - Zahn, Robert A1 - Grotjohann, Sarah A1 - Ramm, Heiko A1 - Zachow, Stefan A1 - Pumberger, Matthias A1 - Putzier, Michael A1 - Perka, Carsten A1 - Tohtz, Stephan T1 - Influence of pelvic tilt on functional acetabular orientation JF - Technology and Health Care Y1 - 2016 U6 - https://doi.org/10.3233/THC-161281 VL - 25 IS - 3 SP - 557 EP - 565 PB - IOS Press ER - TY - GEN A1 - Zachow, Stefan A1 - Zilske, Michael A1 - Hege, Hans-Christian T1 - 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing N2 - For medical diagnosis, visualization, and model-based therapy planning three-dimensional geometric reconstructions of individual anatomical structures are often indispensable. Computer-assisted, model-based planning procedures typically cover specific modifications of “virtual anatomy” as well as numeric simulations of associated phenomena, like e.g. mechanical loads, fluid dynamics, or diffusion processes, in order to evaluate a potential therapeutic outcome. Since internal anatomical structures cannot be measured optically or mechanically in vivo, three-dimensional reconstruction of tomographic image data remains the method of choice. In this work the process chain of individual anatomy reconstruction is described which consists of segmentation of medical image data, geometrical reconstruction of all relevant tissue interfaces, up to the generation of geometric approximations (boundary surfaces and volumetric meshes) of three-dimensional anatomy being suited for finite element analysis. All results presented herein are generated with amira ® – a highly interactive software system for 3D data analysis, visualization and geometry reconstruction. T3 - ZIB-Report - 07-41 KW - Medical image segmentation KW - computational geometry KW - virtual anatomy KW - finite element meshes Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10440 SN - 1438-0064 ER - TY - CHAP A1 - Zachow, Stefan A1 - Zilske, Michael A1 - Hege, Hans-Christian T1 - 3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing T2 - 25. ANSYS Conference & CADFEM Users’ Meeting Y1 - 2007 CY - Dresden ER - TY - CHAP A1 - Zachow, Stefan A1 - Weiser, Martin A1 - Hege, Hans-Christian A1 - Deuflhard, Peter ED - Payan, Y. T1 - Soft Tissue Prediction in Computer Assisted Maxillofacial Surgery Planning T2 - Biomechanics Applied to Computer Assisted Surgery Y1 - 2005 SP - 277 EP - 298 PB - Research Signpost ER - TY - CHAP A1 - Zachow, Stefan A1 - Weiser, Martin A1 - Deuflhard, Peter ED - Niederlag, Wolfgang ED - Lemke, Heinz ED - Meixensberger, Jürgen ED - Baumann, Michael T1 - Modellgestützte Operationsplanung in der Kopfchirurgie T2 - Modellgestützte Therapie Y1 - 2008 SP - 140 EP - 156 PB - Health Academy ER - TY - JOUR A1 - Zachow, Stefan A1 - Steinmann, Alexander A1 - Hildebrandt, Thomas A1 - Weber, Rainer A1 - Heppt, Werner T1 - CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery JF - Int. J. of Computer Assisted Radiology and Surgery Y1 - 2006 SP - 165 EP - 167 PB - Springer ER - TY - JOUR A1 - Zachow, Stefan A1 - Steinmann, Alexander A1 - Hildebrandt, Thomas A1 - Heppt, Werner T1 - Understanding nasal airflow via CFD simulation and visualization JF - Proc. Computer Aided Surgery around the Head Y1 - 2007 SP - 173 EP - 176 ER - TY - JOUR A1 - Zachow, Stefan A1 - Muigg, Philipp A1 - Hildebrandt, Thomas A1 - Doleisch, Helmut A1 - Hege, Hans-Christian T1 - Visual Exploration of Nasal Airflow JF - IEEE Transactions on Visualization and Computer Graphics Y1 - 2009 U6 - https://doi.org/10.1109/TVCG.2009.198 VL - 15 IS - 8 SP - 1407 EP - 1414 ER - TY - CHAP A1 - Zachow, Stefan A1 - Lueth, Tim A1 - Stalling, Detlev A1 - Hein, Andreas A1 - Klein, Martin A1 - Menneking, Horst T1 - Optimized Arrangement of Osseointegrated Implants: A Surgical Planning System for the Fixation of Facial Protheses T2 - Computer Assisted Radiology and Surgery (CARS’99) Y1 - 1999 SP - 942 EP - 946 PB - Elsevier Science B.V. ER - TY - JOUR A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Zöckler, Maja A1 - Haberl, Ernst T1 - Computergestützte Planung zur chirurgischen Korrektur von frühkindlichen Schädelfehlbildungen (Craniosynostosen) JF - Face 02/09, Int. Mag. of Orofacial Esthetics, Oemus Journale Leipzig Y1 - 2009 SP - 48 EP - 53 ER - TY - CHAP A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Elsholtz, Barbara A1 - Stiller, Michael T1 - Reconstruction of mandibular dysplasia using a statistical 3D shape model T2 - Proc. Computer Assisted Radiology and Surgery (CARS) Y1 - 2005 U6 - https://doi.org/10.1016/j.ics.2005.03.339 SP - 1238 EP - 1243 CY - Berlin, Germany ER - TY - JOUR A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Elsholtz, Barbara A1 - Stiller, Michael T1 - Is the course of the mandibular nerve deducible from the shape of the mandible? JF - Int. J. of Computer Assisted Radiology and Surgery Y1 - 2006 SP - 415 EP - 417 PB - Springer ER - TY - CHAP A1 - Zachow, Stefan A1 - Kubiack, Kim A1 - Malinowski, Jana A1 - Lamecker, Hans A1 - Essig, Harald A1 - Gellrich, Nils-Claudius T1 - Modellgestützte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen T2 - Proc. BMT, Biomed Tech 2010 Y1 - 2010 VL - 55 (Suppl 1) SP - 107 EP - 108 PB - Walter de Gruyter-Verlag ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - A quantitative evaluation of 3D soft tissue prediction in maxillofacial surgery planning T2 - Proc. 3. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboter-assistierte Chirurgie e.V. Y1 - 2004 CY - München ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - On the Predictability of tissue changes after osteotomy planning in maxillofacial surgery T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2004 U6 - https://doi.org/10.1016/j.ics.2004.03.043 SP - 648 EP - 653 CY - Chicago, USA ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - Über die Genauigkeit einer 3D Weichgewebeprädiktion in der MKG-Cirurgie T2 - Workshop ’Bildverarbeitung für die Medizin’ (BVM) Y1 - 2004 SP - 75 EP - 79 CY - Berlin, Germany ER - TY - JOUR A1 - Zachow, Stefan A1 - Heppt, Werner T1 - The Facial Profile JF - Facial Plastic Surgery N2 - Facial appearance in our societies is often associated with notions of attractiveness, juvenileness, beauty, success, and so forth. Hence, the role of facial plastic surgery is highly interrelated to a patient's desire to feature many of these positively connoted attributes, which of course, are subject of different cultural perceptions or social trends. To judge about somebody's facial appearance, appropriate quantitative measures as well as methods to obtain and compare individual facial features are required. This special issue on facial profile is intended to provide an overview on how facial characteristics are surgically managed in an interdisciplinary way based on experience, instrumentation, and modern technology to obtain an aesthetic facial appearance with harmonious facial proportions. The facial profile will be discussed within the context of facial aesthetics. Latest concepts for capturing facial morphology in high speed and impressive detail are presented for quantitative analysis of even subtle changes, aging effects, or facial expressions. In addition, the perception of facial profiles is evaluated based on eye tracking technology. Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1566132 VL - 31 IS - 5 SP - 419 EP - 420 ER - TY - JOUR A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Maxillofacial surgery planning with 3D soft tissue prediction - modeling, planning, simulation JF - 2. Int. Conf. on Advanced Digital Technology in Head and Neck Reconstruction, Abstract 33 Y1 - 2005 SP - 64 CY - Banff, Alberta, CA ER - TY - CHAP A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Computergestützte Operationsplanung in der Gesichtschirurgie T2 - Proc. VDE Kongress 2004 - Innovationen für Menschen, Band 2, Fachtagungsberichte DGBMT - GMM - GMA Y1 - 2004 SP - 53 EP - 58 ER - TY - JOUR A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Computer assisted planning in cranio-maxillofacial surgery JF - Journal of Computing and Information Technology Y1 - 2006 VL - 14(1) SP - 53 EP - 64 ER - TY - CHAP A1 - Zachow, Stefan A1 - Hahn, Horst A1 - Lange, Thomas ED - Schlag, Peter ED - Eulenstein, Sebastian ED - Lange, Thomas T1 - Computerassistierte Chirugieplanung T2 - Computerassistierte Chirurgie Y1 - 2010 SP - 119 EP - 149 PB - Elsevier ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Zeilhofer, Hans-Florian A1 - Sader, Robert T1 - Improved 3D Osteotomy Planning in Cranio-Maxillofacial Surgery T2 - Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2001) Y1 - 2001 U6 - https://doi.org/10.1007/3-540-45468-3_57 SP - 473 EP - 481 CY - Utrecht, The Netherlands ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Zeilhofer, Hans-Florian A1 - Sader, Robert T1 - 3D Osteotomieplanung in der MKG-Chirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung T2 - Rechner- und sensorgestützte Chirurgie, GI Proc. zur SFB 414 Tagung Y1 - 2001 SP - 217 EP - 226 CY - Heidelberg ER - TY - JOUR A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Trepczynski, Adam A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - 3D Osteotomy Planning in Cranio-Maxillofacial Surgery: Experiences and Results of Surgery Planning and Volumetric Finite-Element Soft Tissue Prediction in Three Clinical Cases JF - Computer Assisted Radiology and Surgery (CARS) Y1 - 2002 SP - 983 EP - 987 PB - Springer Verlag ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Sader, Robert A1 - Zeilhofer, Hans-Florian T1 - Draw & Cut: Intuitive 3D Osteotomy Planning on Polygonal Bone Models T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2003 U6 - https://doi.org/10.1016/S0531-5131(03)00272-3 SP - 362 EP - 369 CY - London, UK ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Towards Patient Specific, Anatomy Based Simulation of Facial Mimics for Surgical Nerve Rehabilitation T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2002 SP - 3 EP - 6 PB - Springer Verlag ER - TY - CHAP A1 - Zachow, Stefan A1 - Gladilin, Evgeny A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Finite-Element Simulation of Soft Tissue Deformation T2 - Computer Assisted Radiology and Surgey (CARS) Y1 - 2000 SP - 23 EP - 28 PB - Elsevier Science B.V. ER - TY - CHAP A1 - Zachow, Stefan A1 - Erdmann, Bodo A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Advances in 3D osteotomy planning with 3D soft tissue prediction T2 - Proc. 2nd International Symposium on Computer Aided Surgery around the Head, Abstract Y1 - 2004 SP - 31 CY - Bern ER - TY - JOUR A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Computergestützte Planung in der kraniofazialen Chirurgie JF - Face 01/08, Int. Mag. of Orofacial Esthetics Y1 - 2008 SP - 43 EP - 49 PB - Oemus Journale Leipzig ER - TY - THES A1 - Zachow, Stefan T1 - Computergestützte 3D Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung T1 - Computer assisted 3D osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue arrangement N2 - In der Arbeit wird die computergestützte Planung von chirurgisch gesetzten Knochenfrakturen bzw. Knochenschnitten (sogenannten Osteotomien) an dreidimensionalen, computergrafischen Schädelmodellen, sowie die Umpositionierung separierter knöcherner Segmente im Kontext der rekonstruktiven MKG-Chirurgie behandelt. Durch die 3D Modellierung und Visualisierung anatomischer Strukturen, sowie der 3D Osteotomie- und Umstellungsplanung unter Einbeziehung der resultierenden Weichgewebedeformation wird den Chirurgen ein Werkzeug an die Hand gegeben, mit dem eine Therapieplanung am Computer durchgeführt und diese in Hinblick auf Funktion und Ästhetik bewertet werden kann. Unterschiedliche Strategien können dabei erprobt und in ihrer Auswirkung erfasst werden. Dazu wird ein methodischer Ansatz vorgestellt, der zum einen die chirurgische Planung im Vergleich zu existierenden Ansätzen deutlich verbessert und zum anderen eine robuste Weichgewebeprognose, durch den Einsatz geeigneter Planungsmodelle und eines physikalisch basierten Weichgewebemodells unter Nutzung numerischer Lösungsverfahren in die Planung integriert. Die Visualisierung der Planungsergebnisse erlaubt sowohl eine anschauliche und überzeugende, präoperative Patientenaufklärung, als auch die Demonstration möglicher Vorgehensweisen und deren Auswirkungen für die chirurgische Ausbildung. Ferner ergänzen die Planungsdaten die Falldokumentation und liefern einen Beitrag zur Qualitätssicherung. Die Arbeit ist in sieben Kapitel gegliedert und wie folgt strukturiert: Zuerst wird die medizinische Aufgabenstellung bei der chirurgischen Rekonstruktion von Knochenfehlbildungen und -fehlstellungen in der kraniofazialen Chirurgie sowie die daraus resultierenden Anforderungen an die Therapieplanung beschrieben. Anschließend folgt ein umfassender Überblick über entsprechende Vorarbeiten zur computergestützten Planung knochenverlagernder Operationen und eine kritische Bestandsaufnahme der noch vorhandenen Defizite. Nach der Vorstellung des eigenen Planungsansatzes wird die Generierung individueller, qualitativ hochwertiger 3D Planungsmodelle aus tomografischen Bilddaten beschrieben, die den Anforderungen an eine intuitive, 3D Planung von Umstellungsosteotomien entsprechen und eine Simulation der daraus resultierenden Weichgewebedeformation mittels der Finite-Elemente Methode (FEM) ermöglichen. Die Methoden der 3D Schnittplanung an computergrafischen Modellen werden analysiert und eine 3D Osteotomieplanung an polygonalen Schädelmodellen entwickelt, die es ermöglicht, intuitiv durch Definition von Schnittlinien am 3D Knochenmodell, eine den chirurgischen Anforderungen entsprechende Schnittplanung unter Berücksichtigung von Risikostrukturen durchzuführen. Separierte Knochensegmente lassen sich im Anschluss interaktiv umpositionieren und die resultierende Gesamtanordnung hinsichtlich einer funktionellen Rehabilitation bewerten. Aufgrund des in dieser Arbeit gewählten, physikalisch basierten Modellierungsansatzes kann unter Berücksichtigung des gesamten Weichgewebevolumens aus der Knochenverlagerung direkt die resultierende Gesichtsform berechnet werden. Dies wird anhand von 13 exemplarischen Fallstudien anschaulich demonstriert, wobei die Prognosequalität mittels postoperativer Fotografien und postoperativer CT-Daten überprüft und belegt wird. Die Arbeit wird mit einem Ausblick auf erweiterte Modellierungsansätze und einem Konzept für eine integrierte, klinisch einsetzbare Planungsumgebung abgeschlossen. N2 - In cranio-maxillofacial surgery, physicians are often faced with skeletal malformations that require complex bone relocations. Especially in severe cases of congenital dysgnathia (misalignment of upper and lower jaw) or hemifacial microsomia (asymmetric bone and tissue development), where multiple bone segments are to be mobilized and relocated simultaneously and in relation to each other, careful preoperative planning is mandatory. At present in clinical routine not all possible strategies can be planned and assessed with regard to functional rehabilitation. Moreover, the aesthetic outcome, i.e. the postoperative facial appearance, can only be estimated by a surgeon's experience and hardly communicated to the patient. On this account, a preoperative planning of complex osteotomies with bone relocations on a computerized model of a patient's head, including a reliable three-dimensional prediction and visualization of the post-surgical facial appearance is a highly appreciated possibility cranio-maxillofacial surgeons are longing for. This work, being performed at Zuse Institute Berlin (ZIB), addresses such a computer based 3D~surgery planning. A processing pipeline has been established and a simulation environment has been developed on basis of the software Amira, enabling a surgeon to perform bone cuts and bone rearrangements in an intuitive manner on virtual patient models. In addition, a prediction of the patients' postoperative appearance according to the relocated bone can be simulated and visualized realistically. For a meaningful planning of surgical procedures, anatomically correct patient models providing all relevant details are reconstructed from tomographic data with high fidelity. These patient models reliably represent bony structures as well as the facial soft tissue. Unstructured volumetric grids of the soft tissue are generated for a fast and efficient numerical solution of partial differential equations, describing tissue deformation on the foundation of 3D elastomechanics. The planning of osteotomies (bone cuts) for the mobilization and relocation of bone segments is performed in accordance to the planning on basis of life size replicas of a patient's skull, i.e. stereolitographic models. Osteotomy lines can be drawn on top of the polygonal planning models using suitable input devices. After evaluation of the consequence of a planned cut with regard to vulnerable inner structures (nerves, teeth etc.) the model is separated accordingly. A relocation of bone segments can be performed unrestrictedly in 3D or restricted to a translation or rotation within arbitrarily chosen planes under consideration of cephalometric guidelines. Bone and tooth collisions can be evaluated for functional analysis or orthodontic treatment planning with possible integration of digitized dental plaster casts. As a result of the preoperative planning, a single transformation matrix, encoding translation and rotation, or a sequence of such matrices are provided for each bone segment. Both the osteotomy paths and the transformation parameters can finally be used for intra-operative navigation. In the course of the planning, the relocated positions of bone segments serve as an input for the simulation of the resulting soft tissue deformation. Since bone and surrounding soft tissue share common boundaries that are either fixed or translocated, the resulting configuration of the entire tissue volume can be computed from the given boundary displacements by numerical minimization of the internal strain energy on basis of a biomechanical model, using a finite-element approach. In collaboration with different surgeons and hospitals more than 25 treatments have been accompanied by preoperative planning so far ranging from mandibular and midfacial hypoplasia to complex hemifacial microsomia. 13 of these cases are presented within this work. Simulation results were validated on the basis of photographs as well as of postoperative CT data, showing a good correlation between simulation and postoperative outcome. Further aspects of improving the modeling approach are discussed. It has been demonstrated that 3D~osteotomy planning on virtual patient models can be performed intuitively, and that 3D~tissue deformation for cranio-maxillofacial osteotomy planning can be predicted numerically without using heuristic ratios. It can be stated that by using 3D~planning software, a surgeon gains a better spatial understanding of complex dysplasia, and the 3D~soft tissue prediction gives an additional criterion for the assessment of the planned strategy. It turned out that, especially in complex cases such as hemifacial microsomia or for decisions bet­ween mono- and bimaxillary advancements, a 3D~planning aid is extremely helpful. The conclusion is, that images and animations created within the planning phase provide a valuable planning criterion for maxillofacial surgeons as well as a demonstrative information for patients and their relatives, thus greatly enhancing patient information, as well as surgical education. All data that result from the planning are also important for documentation and quality assurance. 3D osteotomy planning, including soft tissue prediction, likely will become a new paradigm of plastic and reconstructive surgery planning in the future. An assortment of results can be found under: http://www.zib.de/visual/medical/projects KW - MKG-Chirurgie KW - Mund-Kiefer-Gesichtschirurgie KW - Therapieplanung KW - Osteotomie KW - Weichgewebeprädiktion KW - computer assisted surgery KW - therapy planning KW - osteotomy KW - soft tissue prediction KW - CAS Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10432 SN - 3899631986 ER - TY - THES A1 - Zachow, Stefan T1 - Design and Implementation of a planning system for episthetic surgery T2 - Entwurf und Implementierung eines chirurgischen Planungssystems für Einsatz in der Epithetik Y1 - 1999 ER - TY - THES A1 - Zachow, Stefan T1 - Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes T2 - Computergestützte Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung Y1 - 2005 UR - www.dr.hut-verlag.de/titelMedizininformatik.html ER - TY - JOUR A1 - Zachow, Stefan T1 - Computational Planning in Facial Surgery JF - Facial Plastic Surgery N2 - This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1564717 VL - 31 IS - 5 SP - 446 EP - 462 ER - TY - GEN A1 - Wilson, David A1 - Bücher, Pia A1 - Grewe, Carl Martin A1 - Mocanu, Valentin A1 - Anglin, Carolyn A1 - Zachow, Stefan A1 - Dunbar, Michael T1 - Validation of Three Dimensional Models of the Distal Femur Created from Surgical Navigation Data T2 - Orthopedic Research Society Annual Meeting Y1 - 2015 CY - Las Vegas, Nevada ER - TY - GEN A1 - Wilson, David A1 - Bücher, Pia A1 - Grewe, Carl Martin A1 - Anglin, Carolyn A1 - Zachow, Stefan A1 - Michael, Dunbar T1 - Validation of Three Dimensional Models of the Distal Femur Created from Surgical Navigation Point Cloud Data T2 - 15th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) Y1 - 2015 ER - TY - JOUR A1 - Wilson, David A1 - Anglin, Carolyn A1 - Ambellan, Felix A1 - Grewe, Carl Martin A1 - Tack, Alexander A1 - Lamecker, Hans A1 - Dunbar, Michael A1 - Zachow, Stefan T1 - Validation of three-dimensional models of the distal femur created from surgical navigation point cloud data for intraoperative and postoperative analysis of total knee arthroplasty JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients. Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared. Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas. Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback. Y1 - 2017 UR - https://link.springer.com/content/pdf/10.1007%2Fs11548-017-1630-5.pdf U6 - https://doi.org/10.1007/s11548-017-1630-5 VL - 12 IS - 12 SP - 2097 EP - 2105 PB - Springer ER - TY - JOUR A1 - Westermark, Anders A1 - Zachow, Stefan A1 - Eppley, Barry T1 - 3D osteotomy planning in maxillofacial surgery, including 3D soft tissue prediction JF - Journal of Craniofacial Surgery Y1 - 2005 VL - 16(1) SP - 100 EP - 104 ER - TY - JOUR A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Craniofacial Surgery Planning Based on Virtual Patient Models JF - it - Information Technology Y1 - 2010 U6 - https://doi.org/10.1524/itit.2010.0600 VL - 52 IS - 5 SP - 258 EP - 263 PB - Oldenbourg Verlagsgruppe ER - TY - GEN A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita A1 - Zachow, Stefan T1 - Uncertainty in Temperature-Based Determination of Time of Death N2 - Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD. T3 - ZIB-Report - 17-18 KW - forensic medicine KW - determination of time of death KW - heat transfer equation KW - sensitivity i.r.t. thermal parameters KW - sensitivity i.r.t. geometric resolution Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63818 SN - 1438-0064 ER - TY - JOUR A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita A1 - Zachow, Stefan T1 - Uncertainty in Temperature-Based Determination of Time of Death JF - Heat and Mass Transfer N2 - Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. Y1 - 2018 U6 - https://doi.org/10.1007/s00231-018-2324-4 VL - 54 IS - 9 SP - 2815 EP - 2826 PB - Springer ER - TY - JOUR A1 - Wagendorf, Oliver A1 - Nahles, Susanne A1 - Vach, Kirstin A1 - Kernen, Florian A1 - Zachow, Stefan A1 - Heiland, Max A1 - Flügge, Tabea T1 - The impact of teeth and dental restorations on gray value distribution in cone-beam computer tomography - a pilot study JF - International Journal of Implant Dentistry N2 - Purpose: To investigate the influence of teeth and dental restorations on the facial skeleton's gray value distributions in cone-beam computed tomography (CBCT). Methods: Gray value selection for the upper and lower jaw segmentation was performed in 40 patients. In total, CBCT data of 20 maxillae and 20 mandibles, ten partial edentulous and ten fully edentulous in each jaw, respectively, were evaluated using two different gray value selection procedures: manual lower threshold selection and automated lower threshold selection. Two sample t tests, linear regression models, linear mixed models, and Pearson's correlation coefficients were computed to evaluate the influence of teeth, dental restorations, and threshold selection procedures on gray value distributions. Results: Manual threshold selection resulted in significantly different gray values in the fully and partially edentulous mandible. (p = 0.015, difference 123). In automated threshold selection, only tendencies to different gray values in fully edentulous compared to partially edentulous jaws were observed (difference: 58–75). Significantly different gray values were evaluated for threshold selection approaches, independent of the dental situation of the analyzed jaw. No significant correlation between the number of teeth and gray values was assessed, but a trend towards higher gray values in patients with more teeth was noted. Conclusions: Standard gray values derived from CT imaging do not apply for threshold-based bone segmentation in CBCT. Teeth influence gray values and segmentation results. Inaccurate bone segmentation may result in ill-fitting surgical guides produced on CBCT data and misinterpreting bone density, which is crucial for selecting surgical protocols. Y1 - 2023 U6 - https://doi.org/10.1186/s40729-023-00493-z VL - 9 IS - 27 ER - TY - JOUR A1 - von Tycowicz, Christoph A1 - Ambellan, Felix A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - An Efficient Riemannian Statistical Shape Model using Differential Coordinates JF - Medical Image Analysis N2 - We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key advantage of our framework is that statistics in a manifold shape space becomes numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders. Y1 - 2018 U6 - https://doi.org/10.1016/j.media.2017.09.004 VL - 43 IS - 1 SP - 1 EP - 9 ER - TY - CHAP A1 - von Berg, Jens A1 - Dworzak, Jalda A1 - Klinder, Tobias A1 - Manke, Dirk A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Lorenz, Cristian T1 - Temporal Subtraction of Chest Radiographs Compensating Pose Differences T2 - SPIE Medical Imaging Y1 - 2011 ER - TY - GEN A1 - Tycowicz, Christoph von A1 - Ambellan, Felix A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - A Riemannian Statistical Shape Model using Differential Coordinates N2 - We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders. T3 - ZIB-Report - 16-69 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61175 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6485 SN - 1438-0064 ER - TY - JOUR A1 - Taylor, William R. A1 - Pöpplau, Berry M. A1 - König, Christian A1 - Ehrig, Rainald A1 - Zachow, Stefan A1 - Duda, Georg A1 - Heller, Markus O. T1 - The medial-lateral force distribution in the ovine stifle joint during walking JF - Journal of Orthopaedic Research Y1 - 2011 U6 - https://doi.org/10.1002/jor.21254 VL - 29 IS - 4 SP - 567 EP - 571 ER - TY - CHAP A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) N2 - Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression. Y1 - 2019 U6 - https://doi.org/10.1109/ISBI.2019.8759201 SP - 40 EP - 43 ER - TY - GEN A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis. T3 - ZIB-Report - 19-05 KW - Deep Learning KW - imaging biomarker KW - radiomics KW - cartilage morphometry KW - volume assessment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71439 SN - 1438-0064 ER - TY - GEN A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. T3 - ZIB-Report - 21-33 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84415 SN - 1438-0064 ER - TY - JOUR A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database JF - Frontiers in Bioengineering and Biotechnology, section Biomechanics N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. Y1 - 2021 U6 - https://doi.org/10.3389/fbioe.2021.747217 SP - 28 EP - 41 ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - JOUR A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative JF - Osteoarthritis and Cartilage N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. Y1 - 2018 U6 - https://doi.org/10.1016/j.joca.2018.02.907 VL - 26 IS - 5 SP - 680 EP - 688 ER - TY - GEN A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material) N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. Y1 - 2018 U6 - https://doi.org/10.12752/4.TMZ.1.0 N1 - Supplementary data to reproduce results from the related publication, including convolutional neural networks' weights. ER - TY - GEN A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. T3 - ZIB-Report - 18-15 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68038 SN - 1438-0064 VL - 26 IS - 5 SP - 680 EP - 688 ER - TY - GEN A1 - Tack, Alexander A1 - Ambellan, Felix A1 - Zachow, Stefan T1 - Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative (Supplementary Material) T2 - PLOS One N2 - Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA A fully automated method is employed to segment six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between healthy and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Substantial agreement with weighted kappa values of 0.73, 0.73, and 0.79 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.60 and 0.75 for prediction of incident KOA and TKR within 5 years, respectively. Quantitative features from automated segmentations yield excellent results for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features as KOA biomarkers should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication. Y1 - 2021 U6 - https://doi.org/10.12752/8328 N1 - 46,996 automated segmentations for data from the OAI database. VL - 16 IS - 10 ER - TY - JOUR A1 - Tack, Alexander A1 - Ambellan, Felix A1 - Zachow, Stefan T1 - Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative JF - PLOS One N2 - Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA. Six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are segmented in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73, 0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR within one year, respectively. Quantitative features from automated segmentations provide novel biomarkers for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features should be further evaluated, especially as extensions of CNN- based approaches. To foster such developments we make all segmentations publicly available together with this publication. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0258855 VL - 16 IS - 10 ER - TY - JOUR A1 - Steinmann, Alexander A1 - Bartsch, Peter A1 - Zachow, Stefan A1 - Hildebrandt, Thomas T1 - Breathing Easily: Simulation of airflow in human noses can become a useful rhinosurgery planning tool JF - ANSYS Advantage Y1 - 2008 VL - Vol. II, No. 1 SP - 30 EP - 31 ER - TY - CHAP A1 - Stefan, Saevarsson A1 - Gulshan, Sharma A1 - Sigrun, Montgomery A1 - Karen, Ho A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Hutchison, Carol A1 - Jason, Werle A1 - Carolyn, Anglin T1 - Kinematic Comparison Between Gender Specific and Traditional Femoral Implants T2 - 67th Canadian Orthopaedic Association (COA) Annual Meeting Y1 - 2012 ER - TY - CHAP A1 - Stalling, Detlev A1 - Seebaß, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie T2 - Bildverarbeitung für die Medizin 1999 - Algorithmen, Anwendungen Y1 - 1999 SP - 203 EP - 207 PB - Springer-Verlag, Berlin ER - TY - GEN A1 - Stalling, Detlev A1 - Seebass, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie N2 - Polygonale Schädelmodelle bilden ein wichtiges Hilfsmittel für computergestützte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgelösten CT-Datensätzen erzeugt werden können. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten möglich wird. Die Verwendung eines speziellen Transparenzmodells ermöglicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und läßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen. T3 - ZIB-Report - TR-98-05 KW - Isoflächen KW - Simplifizierung KW - Transparenzen Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5661 ER - TY - GEN A1 - SK, Saevarsson A1 - GB, Sharma A1 - S, Montgomery A1 - KCT, Ho A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - C, Anglin T1 - Kinematic Comparison Between Gender Specific and Traditional Femoral Implants T2 - Proceedings of the 11th Alberta Biomedical Engineering (BME) Conference (Poster) Y1 - 2011 SP - 80 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Riehm, Felix A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - VoxSculpt: An Open-Source Voxel Library for Tomographic Volume Sculpting in Virtual Reality T2 - 2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023 N2 - Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality. Y1 - 2023 U6 - https://doi.org/10.1109/ICVR57957.2023.10169420 SP - 515 EP - 523 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - An Immersive Virtual Paleontology Application T2 - 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022 N2 - Virtual paleontology studies digital fossils through data analysis and visualization systems. The discipline is growing in relevance for the evident advantages of non-destructive imaging techniques over traditional paleontological methods, and it has made significant advancements during the last few decades. However, virtual paleontology still faces a number of technological challenges, amongst which are interaction shortcomings of image segmentation applications. Whereas automated segmentation methods are seldom applicable to fossil datasets, manual exploration of these specimens is extremely time-consuming as it impractically delves into three-dimensional data through two-dimensional visualization and interaction means. This paper presents an application that employs virtual reality and haptics to virtual paleontology in order to evolve its interaction paradigms and address some of its limitations. We provide a brief overview of the challenges faced by virtual paleontology practitioners, a description of our immersive virtual paleontology prototype, and the results of a heuristic evaluation of our design. Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-06249-0 SP - 478 EP - 481 ER - TY - CHAP A1 - Siqueira Rodrigues, Lucas A1 - Nyakatura, John A1 - Zachow, Stefan A1 - Israel, Johann Habakuk T1 - Design Challenges and Opportunities of Fossil Preparation Tools and Methods T2 - Proceedings of the 20th International Conference on Culture and Computer Science: Code and Materiality N2 - Fossil preparation is the activity of processing paleontological specimens for research and exhibition purposes. In addition to traditional mechanical extraction of fossils, preparation presently comprises non-destructive digital methods that are part of a relatively new field, namely virtual paleontology. Despite significant technological advances, both traditional and digital preparation remain cumbersome and time-consuming endeavors. However, this field has received scarce attention from a human-computer interaction perspective. The present study aims to elucidate the state-of-the-art for paleontological fossil preparation in order to determine its main challenges and start a conversation regarding opportunities for creating novel designs that tackle the field's current issues. We conducted a qualitative study involving both technical preparators and virtual paleontologists. The study was divided into two parts: First, we assembled technical preparators and paleontology researchers in a focus group session to discuss their workflows, obtain a preliminary understanding of their issues, and ideate solutions based on their counterparts' workflows. Next, we conducted a series of contextual inquiries involving direct observation and semi-structured in-depth interviews. We transcribed our recordings and examined the data through theoretical and inductive thematic analysis, clustering emerging themes and applying concepts from human-computer interaction and related fields. Our findings report on challenges faced by traditional and digital fossil preparators and potential opportunities to improve their tools and workflows. We contribute with a novel analysis of fossil preparation from an HCI perspective. Y1 - 2023 U6 - https://doi.org/10.1145/3623462.3623470 PB - Association for Computing Machinery CY - New York, NY, USA ER - TY - GEN A1 - Sharma, Gulshan A1 - Saevarsson, Stefan A1 - Amiri, Shahram A1 - Montgomery, Sigrun A1 - Ramm, Heiko A1 - Lichti, Derek A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Sequential-Biplane Radiography for Measuring Pre and Post Total Knee Arthroplasty Kinematics T2 - 58th Annual Meeting of the Orthopaedic Research Society (ORS) Y1 - 2012 CY - San Francisco, CA ER - TY - GEN A1 - Sharma, Gulshan A1 - Ho, Karen A1 - Saevarsson, Stefan A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Knee Pose and Geometry Pre- and Post-Total Knee Arthroplasty Using Computed Tomography T2 - 58th Annual Meeting of the Orthopaedic Research Society (ORS) Y1 - 2012 CY - San Francisco, CA ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Husseini, Malek E. A1 - Bayat, Amirhossein A1 - Löffler, Maximilian A1 - Liebl, Hans A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Brown, Kevin A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Chen, Di A1 - Bai, Yiwei A1 - Rapazzo, Brandon H. A1 - Yeah, Timyoas A1 - Zhang, Amber A1 - Xu, Shangliang A1 - Hou, Feng A1 - He, Zhiqiang A1 - Zeng, Chan A1 - Xiangshang, Zheng A1 - Liming, Xu A1 - Netherton, Tucker J. A1 - Mumme, Raymond P. A1 - Court, Laurence E. A1 - Huang, Zixun A1 - He, Chenhang A1 - Wang, Li-Wen A1 - Ling, Sai Ho A1 - Huynh, Lê Duy A1 - Boutry, Nicolas A1 - Jakubicek, Roman A1 - Chmelik, Jiri A1 - Mulay, Supriti A1 - Sivaprakasam, Mohanasankar A1 - Paetzold, Johannes C. A1 - Shit, Suprosanna A1 - Ezhov, Ivan A1 - Wiestler, Benedikt A1 - Glocker, Ben A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images JF - Medical Image Analysis N2 - Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102166 VL - 73 ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Bayat, Amirhossein A1 - Husseini, Malek E. A1 - Löffler, Maximilian A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Wei, Qingyue A1 - Brown, Kevin A1 - Wolf, Matthias A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images JF - arXiv Y1 - 2020 ER - TY - CHAP A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Segmentation of Bony Structures with Ligament Attachment Sites T2 - Bildverarbeitung für die Medizin 2008 Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-78640-5_42 SP - 207 EP - 211 PB - Springer ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - A System for Unsupervised Extraction of Orthopaedic Parameters from CT Data T2 - GI Workshop Softwareassistenten - Computerunterstützung für die medizinische Diagnose und Therapieplanung Y1 - 2009 SP - 1328 EP - 1337 CY - Lübeck, Germany ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Bindernagel, Matthias A1 - Malinowski, Jana A1 - Zachow, Stefan ED - v. Ginneken, B. T1 - Model-based Auto-Segmentation of Knee Bones and Cartilage in MRI Data T2 - Proc. MICCAI Workshop Medical Image Analysis for the Clinic Y1 - 2010 SP - 215 EP - 223 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Kuss, Anja A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Menzel, Randolf A1 - Rybak, Juergen T1 - Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active statistical shape models T2 - Proc. 1st INCF Congress of Neuroinformatics: Databasing and Modeling the Brain Y1 - 2008 U6 - https://doi.org/10.3389/conf.neuro.11.2008.01.064 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Heller, Markus O. A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Automatic Extraction of Anatomical Landmarks from Medical Image Data: An Evaluation of Different Methods T2 - Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI) Y1 - 2009 SP - 538 EP - 541 CY - Boston, MA, USA ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Heller, Markus O. A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model T2 - Eurographics Workshop on Visual Computing for Biomedicine (VCBM) Y1 - 2008 SP - 93 EP - 100 CY - Delft, Netherlands ER - TY - JOUR A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Erdmann, Bodo A1 - Weiser, Martin A1 - Zachow, Stefan A1 - Heinrich, Andreas A1 - Güttler, Felix Victor A1 - Teichgräber, Ulf A1 - Mall, Gita T1 - Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis JF - International Journal of Legal Medicine N2 - Temperature based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex, but allow a higher accuracy of death time estimation as in principle all relevant cooling mechanisms can be taken into account. Here, a complete work flow for finite element based cooling simulation models is presented. The following steps are demonstrated on CT-phantoms: • CT-scan • Segmentation of the CT images for thermodynamically relevant features of individual geometries • Conversion of the segmentation result into a Finite Element (FE) simulation model • Computation of the model cooling curve • Calculation of the cooling time For the first time in FE-based cooling time estimation the steps from the CT image over segmentation to FE model generation are semi-automatically performed. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using different CTphantoms. Some of the CT phantoms thermodynamic material parameters had to be experimentally determined via independent experiments. Moreover the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis. KW - temperature based death time estimation KW - finite element method KW - CT segmentation KW - sensitivity analysis Y1 - 2017 U6 - https://doi.org/doi:10.1007/s00414-016-1523-0 VL - 131 IS - 3 SP - 699 EP - 712 ER - TY - JOUR A1 - Sahu, Manish A1 - Szengel, Angelika A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Surgical phase recognition by learning phase transitions JF - Current Directions in Biomedical Engineering (CDBME) N2 - Automatic recognition of surgical phases is an important component for developing an intra-operative context-aware system. Prior work in this area focuses on recognizing short-term tool usage patterns within surgical phases. However, the difference between intra- and inter-phase tool usage patterns has not been investigated for automatic phase recognition. We developed a Recurrent Neural Network (RNN), in particular a state-preserving Long Short Term Memory (LSTM) architecture to utilize the long-term evolution of tool usage within complete surgical procedures. For fully automatic tool presence detection from surgical video frames, a Convolutional Neural Network (CNN) based architecture namely ZIBNet is employed. Our proposed approach outperformed EndoNet by 8.1% on overall precision for phase detection tasks and 12.5% on meanAP for tool recognition tasks. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1515/cdbme-2020-0037 N1 - Nomination for the Best-Paper Award VL - 6 IS - 1 SP - 20200037 PB - De Gruyter ER - TY - GEN A1 - Sahu, Manish A1 - Szengel, Angelika A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Analyzing laparoscopic cholecystectomy with deep learning: automatic detection of surgical tools and phases T2 - 28th International Congress of the European Association for Endoscopic Surgery (EAES) N2 - Motivation: The ever-rising volume of patients, high maintenance cost of operating rooms and time consuming analysis of surgical skills are fundamental problems that hamper the practical training of the next generation of surgeons. The hospitals prefer to keep the surgeons busy in real operations over training young surgeons for obvious economic reasons. One fundamental need in surgical training is the reduction of the time needed by the senior surgeon to review the endoscopic procedures performed by the young surgeon while minimizing the subjective bias in evaluation. The unprecedented performance of deep learning ushers the new age of data-driven automatic analysis of surgical skills. Method: Deep learning is capable of efficiently analyzing thousands of hours of laparoscopic video footage to provide an objective assessment of surgical skills. However, the traditional end-to-end setting of deep learning (video in, skill assessment out) is not explainable. Our strategy is to utilize the surgical process modeling framework to divide the surgical process into understandable components. This provides the opportunity to employ deep learning for superior yet automatic detection and evaluation of several aspects of laparoscopic cholecystectomy such as surgical tool and phase detection. We employ ZIBNet for the detection of surgical tool presence. ZIBNet employs pre-processing based on tool usage imbalance, a transfer learned 50-layer residual network (ResNet-50) and temporal smoothing. To encode the temporal evolution of tool usage (over the entire video sequence) that relates to the surgical phases, Long Short Term Memory (LSTM) units are employed with long-term dependency. Dataset: We used CHOLEC 80 dataset that consists of 80 videos of laparoscopic cholecystectomy performed by 13 surgeons, divided equally for training and testing. In these videos, up to three different tools (among 7 types of tools) can be present in a frame. Results: The mean average precision of the detection of all tools is 93.5 ranging between 86.8 and 99.3, a significant improvement (p <0.01) over the previous state-of-the-art. We observed that less frequent tools like Scissors, Irrigator, Specimen Bag etc. are more related to phase transitions. The overall precision (recall) of the detection of all surgical phases is 79.6 (81.3). Conclusion: While this is not the end goal for surgical skill analysis, the development of such a technological platform is essential toward a data-driven objective understanding of surgical skills. In future, we plan to investigate surgeon-in-the-loop analysis and feedback for surgical skill analysis. Y1 - 2020 UR - https://academy.eaes.eu/eaes/2020/28th/298882/manish.sahu.analyzing.laparoscopic.cholecystectomy.with.deep.learning.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D2 ER - TY - CHAP A1 - Sahu, Manish A1 - Strömsdörfer, Ronja A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Endo-Sim2Real: Consistency learning-based domain adaptation for instrument segmentation T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part III N2 - Surgical tool segmentation in endoscopic videos is an important component of computer assisted interventions systems. Recent success of image-based solutions using fully-supervised deep learning approaches can be attributed to the collection of big labeled datasets. However, the annotation of a big dataset of real videos can be prohibitively expensive and time consuming. Computer simulations could alleviate the manual labeling problem, however, models trained on simulated data do not generalize to real data. This work proposes a consistency-based framework for joint learning of simulated and real (unlabeled) endoscopic data to bridge this performance generalization issue. Empirical results on two data sets (15 videos of the Cholec80 and EndoVis'15 dataset) highlight the effectiveness of the proposed Endo-Sim2Real method for instrument segmentation. We compare the segmentation of the proposed approach with state-of-the-art solutions and show that our method improves segmentation both in terms of quality and quantity. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-59716-0_75 VL - 12263 PB - Springer Nature ER - TY - JOUR A1 - Sahu, Manish A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Simulation-to-Real domain adaptation with teacher-student learning for endoscopic instrument segmentation JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods We introduce a teacher–student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation. Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical instrument in the annotation scarce setting. Y1 - 2021 U6 - https://doi.org/10.1007/s11548-021-02383-4 N1 - Honorary Mention: Machine Learning for Computer-Assisted Intervention (CAI) Award @IPCAI2021 N1 - Honorary Mention: Audience Award for Best Innovation @IPCAI2021 VL - 16 SP - 849 EP - 859 PB - Springer Nature ER - TY - JOUR A1 - Sahu, Manish A1 - Mukhopadhyay, Anirban A1 - Szengel, Angelika A1 - Zachow, Stefan T1 - Addressing multi-label imbalance problem of Surgical Tool Detection using CNN JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose: A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. Methods: In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during Convolutional Neural Network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance run time prediction. Results: Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. Conclusion: The analysis on tool imbalance, backed by the empirical results indicates the need and superiority of the proposed framework over state-of-the-art techniques. Y1 - 2017 UR - https://link.springer.com/article/10.1007/s11548-017-1565-x U6 - https://doi.org/10.1007/s11548-017-1565-x N1 - Selected for final oral presentation VL - 12 IS - 6 SP - 1013 EP - 1020 PB - Springer ER - TY - GEN A1 - Sahu, Manish A1 - Dill, Sabrina A1 - Mukhopadyay, Anirban A1 - Zachow, Stefan T1 - Surgical Tool Presence Detection for Cataract Procedures N2 - This article outlines the submission to the CATARACTS challenge for automatic tool presence detection [1]. Our approach for this multi-label classification problem comprises labelset-based sampling, a CNN architecture and temporal smothing as described in [3], which we call ZIB-Res-TS. T3 - ZIB-Report - 18-28 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69110 SN - 1438-0064 ER - TY - JOUR A1 - Saevarsson, Stefan A1 - Sharma, Gulshan A1 - Ramm, Heiko A1 - Lieck, Robert A1 - Hutchison, Carol A1 - Werle, Jason A1 - Montgomery, Sigrun A1 - Romeo, Carolina A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Kinematic Differences Between Gender Specific And Traditional Knee Implants JF - The Journal of Arthroplasty Y1 - 2013 U6 - https://doi.org/10.1016/j.arth.2013.01.021 VL - 28 IS - 9 SP - 1543 EP - 1550 ER - TY - JOUR A1 - Saevarsson, Stefan A1 - Sharma, Gulshan A1 - Amiri, Shahram A1 - Montgomery, Sigrun A1 - Ramm, Heiko A1 - Lichti, Derek A1 - Lieck, Robert A1 - Zachow, Stefan A1 - Anglin, Carolyn T1 - Radiological method for measuring patellofemoral tracking and tibiofemoral kinematics before and after total knee replacement JF - Bone and Joint Research Y1 - 2012 UR - http://www.bjr.boneandjoint.org.uk/content/1/10/263.short U6 - https://doi.org/10.1302/2046-3758.110.2000117 VL - 1 IS - 10 SP - 263 EP - 271 ER - TY - JOUR A1 - Rybak, Jürgen A1 - Kuß, Anja A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Lienhard, Matthias A1 - Singer, Jochen A1 - Neubert, Kerstin A1 - Menzel, Randolf T1 - The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System JF - Front. Syst. Neurosci. Y1 - 2010 U6 - https://doi.org/10.3389/fnsys.2010.00030 VL - 4 IS - 30 ER - TY - CHAP A1 - Ramm, Heiko A1 - Zachow, Stefan ED - Niederlag, Wolfgang ED - Lemke, Heinz ED - Peitgen, Heinz-Otto ED - Lehrach, Hans T1 - Computergestützte Planung für die individuelle Implantatversorgung T2 - Health Academy Y1 - 2012 VL - 16 SP - 145 EP - 158 ER - TY - CHAP A1 - Ramm, Heiko A1 - Victoria Morillo, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans ED - Freysinger, Wolfgang T1 - Visual Support for Positioning Hearing Implants T2 - Proceedings of the 12th annual meeting of the CURAC society Y1 - 2013 SP - 116 EP - 120 ER - TY - GEN A1 - Ramm, Heiko A1 - Morillo Victoria, Oscar Salvador A1 - Todt, Ingo A1 - Schirmacher, Hartmut A1 - Ernst, Arneborg A1 - Zachow, Stefan A1 - Lamecker, Hans T1 - Visual Support for Positioning Hearing Implants N2 - We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit. T3 - ZIB-Report - 13-53 KW - bone anchored hearing implant KW - surgery planning KW - segmentation KW - visualization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42495 SN - 1438-0064 ER - TY - JOUR A1 - Ramm, Heiko A1 - Kahnt, Max A1 - Zachow, Stefan T1 - Patientenspezifische Simulationsmodelle für die funktionelle Analyse von künstlichem Gelenkersatz JF - Computer Aided Medical Engineering (CaMe) Y1 - 2012 VL - 3 IS - 2 SP - 30 EP - 36 ER - TY - JOUR A1 - Pimentel, Pedro A1 - Szengel, Angelika A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Estacio, Laura A1 - Doenitz, Christian A1 - Ramm, Heiko ED - Li, Jianning ED - Egger, Jan T1 - Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks BT - First Challenge, AutoImplant 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings JF - Towards the Automatization of Cranial Implant Design in Cranioplasty N2 - We present an automated method for extrapolating missing regions in label data of the skull in an anatomically plausible manner. The ultimate goal is to design patient-speci� c cranial implants for correcting large, arbitrarily shaped defects of the skull that can, for example, result from trauma of the head. Our approach utilizes a 3D statistical shape model (SSM) of the skull and a 2D generative adversarial network (GAN) that is trained in an unsupervised fashion from samples of healthy patients alone. By � tting the SSM to given input labels containing the skull defect, a First approximation of the healthy state of the patient is obtained. The GAN is then applied to further correct and smooth the output of the SSM in an anatomically plausible manner. Finally, the defect region is extracted using morphological operations and subtraction between the extrapolated healthy state of the patient and the defective input labels. The method is trained and evaluated based on data from the MICCAI 2020 AutoImplant challenge. It produces state-of-the art results on regularly shaped cut-outs that were present in the training and testing data of the challenge. Furthermore, due to unsupervised nature of the approach, the method generalizes well to previously unseen defects of varying shapes that were only present in the hidden test dataset. Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-64327-0_3 N1 - Best Paper Award VL - 12439 SP - 16 EP - 27 PB - Springer International Publishing ET - 1 ER - TY - JOUR A1 - Picht, Thomas A1 - Le Calve, Maxime A1 - Tomasello, Rosario A1 - Fekonja, Lucius A1 - Gholami, Mohammad Fardin A1 - Bruhn, Matthias A1 - Zwick, Carola A1 - Rabe, Jürgen P. A1 - Müller-Birn, Claudia A1 - Vajkoczy, Peter A1 - Sauer, Igor M. A1 - Zachow, Stefan A1 - Nyakatura, John A. A1 - Ribault, Patricia A1 - Pulvermüller, Friedemann T1 - A note on neurosurgical resection and why we need to rethink cutting JF - Neurosurgery Y1 - 2021 U6 - https://doi.org/10.1093/neuros/nyab326 VL - 89 IS - 5 SP - 289 EP - 291 ER - TY - JOUR A1 - Oeltze-Jaffra, Steffen A1 - Meuschke, Monique A1 - Neugebauer, Mathias A1 - Saalfeld, Sylvia A1 - Lawonn, Kai A1 - Janiga, Gabor A1 - Hege, Hans-Christian A1 - Zachow, Stefan A1 - Preim, Bernhard T1 - Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends, and Future Challenges JF - Computer Graphics Forum N2 - Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics. Y1 - 2019 U6 - https://doi.org/10.1111/cgf.13394 VL - 38 IS - 1 SP - 87 EP - 125 PB - Wiley ER - TY - CHAP A1 - Nkenke, Emeka A1 - Zachow, Stefan A1 - Häusler, Gerd T1 - Fusion von optischen 3D- und CT-Daten des Gebisses zur Metallartefaktkorrektur vor computerassistierter Planung MKG-chirurgischer Eingriffe T2 - Symposium der Arbeitsgemeinschaf für Kieferchirurgie Y1 - 2005 CY - Bad Homburg v.d.H ER - TY - JOUR A1 - Nkenke, Emeka A1 - Zachow, Stefan A1 - Benz, Michaela A1 - Maier, Tobias A1 - Veit, Klaus A1 - Kramer, Manuel A1 - Benz, St. A1 - Häusler, Gerd A1 - Neukam, Friedrich A1 - Lell, Michael T1 - Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery JF - Journal of Dento-Maxillofacial Radiology Y1 - 2004 U6 - https://doi.org/10.1259/dmfr/27071199 VL - 33 SP - 226 EP - 232 ER - TY - CHAP A1 - Nkenke, Emeka A1 - Häusler, Gerd A1 - Neukam, Friedrich A1 - Zachow, Stefan T1 - Streak artifact correction of CT data by optical 3D imaging in the simulation of orthognathic surgery T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2005 U6 - https://doi.org/doi:10.1016/j.ics.2005.03.278 CY - Berlin Germany ER - TY - CHAP A1 - Nguyen, The Duy A1 - Lamecker, Hans A1 - Kainmüller, Dagmar A1 - Zachow, Stefan ED - Ayache, Nicholas ED - Delingette, Hervé ED - Golland, Polina ED - Mori, Kensaku T1 - Automatic Detection and Classification of Teeth in CT Data T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI) Y1 - 2012 VL - 7510 SP - 609 EP - 616 ER - TY - JOUR A1 - Nguyen, The Duy A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Automatic bone and tooth detection for CT-based dental implant planning JF - Int. J. Computer Assisted Radiology and Surgery Y1 - 2012 VL - 7, Supplement 1 IS - 1 SP - 293 EP - 294 PB - Springer ER -