TY - GEN A1 - Zilske, Michael A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Adaptive Remeshing of Non-Manifold Surfaces N2 - We present a unified approach for consistent remeshing of arbitrary non-manifold triangle meshes with additional user-defined feature lines, which together form a feature skeleton. Our method is based on local operations only and produces meshes of high regularity and triangle quality while preserving the geometry as well as topology of the feature skeleton and the input mesh. T3 - ZIB-Report - 07-01 KW - remeshing KW - non-manifold KW - mesh quality optimization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9445 ER - TY - GEN A1 - Zachow, Stefan A1 - Zilske, Michael A1 - Hege, Hans-Christian T1 - 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing N2 - For medical diagnosis, visualization, and model-based therapy planning three-dimensional geometric reconstructions of individual anatomical structures are often indispensable. Computer-assisted, model-based planning procedures typically cover specific modifications of “virtual anatomy” as well as numeric simulations of associated phenomena, like e.g. mechanical loads, fluid dynamics, or diffusion processes, in order to evaluate a potential therapeutic outcome. Since internal anatomical structures cannot be measured optically or mechanically in vivo, three-dimensional reconstruction of tomographic image data remains the method of choice. In this work the process chain of individual anatomy reconstruction is described which consists of segmentation of medical image data, geometrical reconstruction of all relevant tissue interfaces, up to the generation of geometric approximations (boundary surfaces and volumetric meshes) of three-dimensional anatomy being suited for finite element analysis. All results presented herein are generated with amira ® – a highly interactive software system for 3D data analysis, visualization and geometry reconstruction. T3 - ZIB-Report - 07-41 KW - Medical image segmentation KW - computational geometry KW - virtual anatomy KW - finite element meshes Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10440 SN - 1438-0064 ER - TY - THES A1 - Zachow, Stefan T1 - Computergestützte 3D Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewebeanordnung T1 - Computer assisted 3D osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue arrangement N2 - In der Arbeit wird die computergestützte Planung von chirurgisch gesetzten Knochenfrakturen bzw. Knochenschnitten (sogenannten Osteotomien) an dreidimensionalen, computergrafischen Schädelmodellen, sowie die Umpositionierung separierter knöcherner Segmente im Kontext der rekonstruktiven MKG-Chirurgie behandelt. Durch die 3D Modellierung und Visualisierung anatomischer Strukturen, sowie der 3D Osteotomie- und Umstellungsplanung unter Einbeziehung der resultierenden Weichgewebedeformation wird den Chirurgen ein Werkzeug an die Hand gegeben, mit dem eine Therapieplanung am Computer durchgeführt und diese in Hinblick auf Funktion und Ästhetik bewertet werden kann. Unterschiedliche Strategien können dabei erprobt und in ihrer Auswirkung erfasst werden. Dazu wird ein methodischer Ansatz vorgestellt, der zum einen die chirurgische Planung im Vergleich zu existierenden Ansätzen deutlich verbessert und zum anderen eine robuste Weichgewebeprognose, durch den Einsatz geeigneter Planungsmodelle und eines physikalisch basierten Weichgewebemodells unter Nutzung numerischer Lösungsverfahren in die Planung integriert. Die Visualisierung der Planungsergebnisse erlaubt sowohl eine anschauliche und überzeugende, präoperative Patientenaufklärung, als auch die Demonstration möglicher Vorgehensweisen und deren Auswirkungen für die chirurgische Ausbildung. Ferner ergänzen die Planungsdaten die Falldokumentation und liefern einen Beitrag zur Qualitätssicherung. Die Arbeit ist in sieben Kapitel gegliedert und wie folgt strukturiert: Zuerst wird die medizinische Aufgabenstellung bei der chirurgischen Rekonstruktion von Knochenfehlbildungen und -fehlstellungen in der kraniofazialen Chirurgie sowie die daraus resultierenden Anforderungen an die Therapieplanung beschrieben. Anschließend folgt ein umfassender Überblick über entsprechende Vorarbeiten zur computergestützten Planung knochenverlagernder Operationen und eine kritische Bestandsaufnahme der noch vorhandenen Defizite. Nach der Vorstellung des eigenen Planungsansatzes wird die Generierung individueller, qualitativ hochwertiger 3D Planungsmodelle aus tomografischen Bilddaten beschrieben, die den Anforderungen an eine intuitive, 3D Planung von Umstellungsosteotomien entsprechen und eine Simulation der daraus resultierenden Weichgewebedeformation mittels der Finite-Elemente Methode (FEM) ermöglichen. Die Methoden der 3D Schnittplanung an computergrafischen Modellen werden analysiert und eine 3D Osteotomieplanung an polygonalen Schädelmodellen entwickelt, die es ermöglicht, intuitiv durch Definition von Schnittlinien am 3D Knochenmodell, eine den chirurgischen Anforderungen entsprechende Schnittplanung unter Berücksichtigung von Risikostrukturen durchzuführen. Separierte Knochensegmente lassen sich im Anschluss interaktiv umpositionieren und die resultierende Gesamtanordnung hinsichtlich einer funktionellen Rehabilitation bewerten. Aufgrund des in dieser Arbeit gewählten, physikalisch basierten Modellierungsansatzes kann unter Berücksichtigung des gesamten Weichgewebevolumens aus der Knochenverlagerung direkt die resultierende Gesichtsform berechnet werden. Dies wird anhand von 13 exemplarischen Fallstudien anschaulich demonstriert, wobei die Prognosequalität mittels postoperativer Fotografien und postoperativer CT-Daten überprüft und belegt wird. Die Arbeit wird mit einem Ausblick auf erweiterte Modellierungsansätze und einem Konzept für eine integrierte, klinisch einsetzbare Planungsumgebung abgeschlossen. N2 - In cranio-maxillofacial surgery, physicians are often faced with skeletal malformations that require complex bone relocations. Especially in severe cases of congenital dysgnathia (misalignment of upper and lower jaw) or hemifacial microsomia (asymmetric bone and tissue development), where multiple bone segments are to be mobilized and relocated simultaneously and in relation to each other, careful preoperative planning is mandatory. At present in clinical routine not all possible strategies can be planned and assessed with regard to functional rehabilitation. Moreover, the aesthetic outcome, i.e. the postoperative facial appearance, can only be estimated by a surgeon's experience and hardly communicated to the patient. On this account, a preoperative planning of complex osteotomies with bone relocations on a computerized model of a patient's head, including a reliable three-dimensional prediction and visualization of the post-surgical facial appearance is a highly appreciated possibility cranio-maxillofacial surgeons are longing for. This work, being performed at Zuse Institute Berlin (ZIB), addresses such a computer based 3D~surgery planning. A processing pipeline has been established and a simulation environment has been developed on basis of the software Amira, enabling a surgeon to perform bone cuts and bone rearrangements in an intuitive manner on virtual patient models. In addition, a prediction of the patients' postoperative appearance according to the relocated bone can be simulated and visualized realistically. For a meaningful planning of surgical procedures, anatomically correct patient models providing all relevant details are reconstructed from tomographic data with high fidelity. These patient models reliably represent bony structures as well as the facial soft tissue. Unstructured volumetric grids of the soft tissue are generated for a fast and efficient numerical solution of partial differential equations, describing tissue deformation on the foundation of 3D elastomechanics. The planning of osteotomies (bone cuts) for the mobilization and relocation of bone segments is performed in accordance to the planning on basis of life size replicas of a patient's skull, i.e. stereolitographic models. Osteotomy lines can be drawn on top of the polygonal planning models using suitable input devices. After evaluation of the consequence of a planned cut with regard to vulnerable inner structures (nerves, teeth etc.) the model is separated accordingly. A relocation of bone segments can be performed unrestrictedly in 3D or restricted to a translation or rotation within arbitrarily chosen planes under consideration of cephalometric guidelines. Bone and tooth collisions can be evaluated for functional analysis or orthodontic treatment planning with possible integration of digitized dental plaster casts. As a result of the preoperative planning, a single transformation matrix, encoding translation and rotation, or a sequence of such matrices are provided for each bone segment. Both the osteotomy paths and the transformation parameters can finally be used for intra-operative navigation. In the course of the planning, the relocated positions of bone segments serve as an input for the simulation of the resulting soft tissue deformation. Since bone and surrounding soft tissue share common boundaries that are either fixed or translocated, the resulting configuration of the entire tissue volume can be computed from the given boundary displacements by numerical minimization of the internal strain energy on basis of a biomechanical model, using a finite-element approach. In collaboration with different surgeons and hospitals more than 25 treatments have been accompanied by preoperative planning so far ranging from mandibular and midfacial hypoplasia to complex hemifacial microsomia. 13 of these cases are presented within this work. Simulation results were validated on the basis of photographs as well as of postoperative CT data, showing a good correlation between simulation and postoperative outcome. Further aspects of improving the modeling approach are discussed. It has been demonstrated that 3D~osteotomy planning on virtual patient models can be performed intuitively, and that 3D~tissue deformation for cranio-maxillofacial osteotomy planning can be predicted numerically without using heuristic ratios. It can be stated that by using 3D~planning software, a surgeon gains a better spatial understanding of complex dysplasia, and the 3D~soft tissue prediction gives an additional criterion for the assessment of the planned strategy. It turned out that, especially in complex cases such as hemifacial microsomia or for decisions bet­ween mono- and bimaxillary advancements, a 3D~planning aid is extremely helpful. The conclusion is, that images and animations created within the planning phase provide a valuable planning criterion for maxillofacial surgeons as well as a demonstrative information for patients and their relatives, thus greatly enhancing patient information, as well as surgical education. All data that result from the planning are also important for documentation and quality assurance. 3D osteotomy planning, including soft tissue prediction, likely will become a new paradigm of plastic and reconstructive surgery planning in the future. An assortment of results can be found under: http://www.zib.de/visual/medical/projects KW - MKG-Chirurgie KW - Mund-Kiefer-Gesichtschirurgie KW - Therapieplanung KW - Osteotomie KW - Weichgewebeprädiktion KW - computer assisted surgery KW - therapy planning KW - osteotomy KW - soft tissue prediction KW - CAS Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10432 SN - 3899631986 ER - TY - GEN A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita A1 - Zachow, Stefan T1 - Uncertainty in Temperature-Based Determination of Time of Death N2 - Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD. T3 - ZIB-Report - 17-18 KW - forensic medicine KW - determination of time of death KW - heat transfer equation KW - sensitivity i.r.t. thermal parameters KW - sensitivity i.r.t. geometric resolution Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63818 SN - 1438-0064 ER - TY - GEN A1 - Tycowicz, Christoph von A1 - Ambellan, Felix A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - A Riemannian Statistical Shape Model using Differential Coordinates N2 - We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders. T3 - ZIB-Report - 16-69 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61175 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6485 SN - 1438-0064 ER - TY - GEN A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis. T3 - ZIB-Report - 19-05 KW - Deep Learning KW - imaging biomarker KW - radiomics KW - cartilage morphometry KW - volume assessment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71439 SN - 1438-0064 ER - TY - GEN A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. T3 - ZIB-Report - 21-33 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84415 SN - 1438-0064 ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - GEN A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. T3 - ZIB-Report - 18-15 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68038 SN - 1438-0064 VL - 26 IS - 5 SP - 680 EP - 688 ER - TY - GEN A1 - Stalling, Detlev A1 - Seebass, Martin A1 - Zachow, Stefan T1 - Mehrschichtige Oberflächenmodelle zur computergestützten Planung in der Chirurgie N2 - Polygonale Schädelmodelle bilden ein wichtiges Hilfsmittel für computergestützte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgelösten CT-Datensätzen erzeugt werden können. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten möglich wird. Die Verwendung eines speziellen Transparenzmodells ermöglicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und läßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen. T3 - ZIB-Report - TR-98-05 KW - Isoflächen KW - Simplifizierung KW - Transparenzen Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5661 ER -