TY - JOUR A1 - Wilson, David A1 - Anglin, Carolyn A1 - Ambellan, Felix A1 - Grewe, Carl Martin A1 - Tack, Alexander A1 - Lamecker, Hans A1 - Dunbar, Michael A1 - Zachow, Stefan T1 - Validation of three-dimensional models of the distal femur created from surgical navigation point cloud data for intraoperative and postoperative analysis of total knee arthroplasty JF - International Journal of Computer Assisted Radiology and Surgery N2 - Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients. Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared. Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas. Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback. Y1 - 2017 UR - https://link.springer.com/content/pdf/10.1007%2Fs11548-017-1630-5.pdf U6 - https://doi.org/10.1007/s11548-017-1630-5 VL - 12 IS - 12 SP - 2097 EP - 2105 PB - Springer ER - TY - CHAP A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative T2 - IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) N2 - Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression. Y1 - 2019 U6 - https://doi.org/10.1109/ISBI.2019.8759201 SP - 40 EP - 43 ER - TY - GEN A1 - Tack, Alexander A1 - Zachow, Stefan T1 - Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis. T3 - ZIB-Report - 19-05 KW - Deep Learning KW - imaging biomarker KW - radiomics KW - cartilage morphometry KW - volume assessment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71439 SN - 1438-0064 ER - TY - GEN A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. T3 - ZIB-Report - 21-33 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84415 SN - 1438-0064 ER - TY - JOUR A1 - Tack, Alexander A1 - Shestakov, Alexey A1 - Lüdke, David A1 - Zachow, Stefan T1 - A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database JF - Frontiers in Bioengineering and Biotechnology, section Biomechanics N2 - We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences. Y1 - 2021 U6 - https://doi.org/10.3389/fbioe.2021.747217 SP - 28 EP - 41 ER - TY - JOUR A1 - Tack, Alexander A1 - Preim, Bernhard A1 - Zachow, Stefan T1 - Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative JF - Computer Methods and Programs in Biomedicine N2 - We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106080 VL - 205 IS - 106080 ER - TY - JOUR A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative JF - Osteoarthritis and Cartilage N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. Y1 - 2018 U6 - https://doi.org/10.1016/j.joca.2018.02.907 VL - 26 IS - 5 SP - 680 EP - 688 ER - TY - GEN A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material) N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. Y1 - 2018 U6 - https://doi.org/10.12752/4.TMZ.1.0 N1 - Supplementary data to reproduce results from the related publication, including convolutional neural networks' weights. ER - TY - GEN A1 - Tack, Alexander A1 - Mukhopadhyay, Anirban A1 - Zachow, Stefan T1 - Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative N2 - Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8% for medial menisci (MM) and 88.9% for lateral menisci (LM) at baseline, and 83.1% and 88.3% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA. T3 - ZIB-Report - 18-15 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68038 SN - 1438-0064 VL - 26 IS - 5 SP - 680 EP - 688 ER - TY - GEN A1 - Tack, Alexander A1 - Ambellan, Felix A1 - Zachow, Stefan T1 - Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative (Supplementary Material) T2 - PLOS One N2 - Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA A fully automated method is employed to segment six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between healthy and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Substantial agreement with weighted kappa values of 0.73, 0.73, and 0.79 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.60 and 0.75 for prediction of incident KOA and TKR within 5 years, respectively. Quantitative features from automated segmentations yield excellent results for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features as KOA biomarkers should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication. Y1 - 2021 U6 - https://doi.org/10.12752/8328 N1 - 46,996 automated segmentations for data from the OAI database. VL - 16 IS - 10 ER -