TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Seim, Heiko A1 - Zinser, Max A1 - Zachow, Stefan ED - Yang, Guang-Zhong ED - J. Hawkes, David ED - Rueckert, Daniel ED - Noble, J. Alison ED - J. Taylor, Chris T1 - Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data T2 - Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) Y1 - 2009 SP - 76 EP - 83 CY - London, UK ER - TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - An Articulated Statistical Shape Model for Accurate Hip Joint Segmentation T2 - EBMC 2009. Int. Conf. of the IEEE Eng. in Med. and Biol. Society (EMBC) Y1 - 2009 SP - 6345 EP - 6351 CY - Minneapolis, USA ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Heller, Markus O. A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Automatic Extraction of Anatomical Landmarks from Medical Image Data: An Evaluation of Different Methods T2 - Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI) Y1 - 2009 SP - 538 EP - 541 CY - Boston, MA, USA ER - TY - JOUR A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Zöckler, Maja A1 - Haberl, Ernst T1 - Computergestützte Planung zur chirurgischen Korrektur von frühkindlichen Schädelfehlbildungen (Craniosynostosen) JF - Face 02/09, Int. Mag. of Orofacial Esthetics, Oemus Journale Leipzig Y1 - 2009 SP - 48 EP - 53 ER - TY - JOUR A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Multi-object Segmentation with Coupled Deformable Models JF - Annals of the British Machine Vision Association (BMVA) Y1 - 2009 VL - 5 SP - 1 EP - 10 ER - TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Coupling Deformable Models for Multi-object Segmentation T2 - Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS) Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-70521-5_8 SP - 69 EP - 78 ER - TY - CHAP A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Heller, Markus O. A1 - Hege, Hans-Christian T1 - Multi-Object Segmentation with Coupled Deformable Models T2 - Proc. Medical Image Understanding and Analysis Y1 - 2008 SP - 34 EP - 38 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Kuss, Anja A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Menzel, Randolf A1 - Rybak, Juergen T1 - Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active statistical shape models T2 - Proc. 1st INCF Congress of Neuroinformatics: Databasing and Modeling the Brain Y1 - 2008 U6 - https://doi.org/10.3389/conf.neuro.11.2008.01.064 ER - TY - CHAP A1 - Dworzak, Jalda A1 - Lamecker, Hans A1 - von Berg, Jens A1 - Klinder, Tobias A1 - Lorenz, Cristian A1 - Kainmüller, Dagmar A1 - Seim, Heiko A1 - Hege, Hans-Christian A1 - Zachow, Stefan T1 - Towards model-based 3-D reconstruction of the human rib cage from radiographs T2 - Proc. 7. Jahrestagung der Deutschen Gesellschaft für Computer-Roboterassistierte Chirurgie (CURAC) Y1 - 2008 SP - 193 EP - 196 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Heller, Markus O. A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model T2 - Eurographics Workshop on Visual Computing for Biomedicine (VCBM) Y1 - 2008 SP - 93 EP - 100 CY - Delft, Netherlands ER - TY - CHAP A1 - Deuflhard, Peter A1 - Dössel, Olaf A1 - Louis, Alfred A1 - Zachow, Stefan T1 - Mehr Mathematik wagen in der Medizin T2 - acatech diskutiert, Produktionsfaktor Mathematik - Wie Mathematik Technik und Wirtschaft bewegt Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-89435-3 SP - 435 EP - 459 PB - Springer ER - TY - JOUR A1 - Zachow, Stefan A1 - Deuflhard, Peter T1 - Computergestützte Planung in der kraniofazialen Chirurgie JF - Face 01/08, Int. Mag. of Orofacial Esthetics Y1 - 2008 SP - 43 EP - 49 PB - Oemus Journale Leipzig ER - TY - CHAP A1 - Zilske, Michael A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Adaptive Remeshing of Non-Manifold Surfaces T2 - Eurographics 2008 Annex to the Conf. Proc. Y1 - 2008 SP - 207 EP - 211 ER - TY - CHAP A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Segmentation of Bony Structures with Ligament Attachment Sites T2 - Bildverarbeitung für die Medizin 2008 Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-78640-5_42 SP - 207 EP - 211 PB - Springer ER - TY - JOUR A1 - Zachow, Stefan A1 - Steinmann, Alexander A1 - Hildebrandt, Thomas A1 - Heppt, Werner T1 - Understanding nasal airflow via CFD simulation and visualization JF - Proc. Computer Aided Surgery around the Head Y1 - 2007 SP - 173 EP - 176 ER - TY - JOUR A1 - Lamecker, Hans A1 - Kamer, Lukas A1 - Wittmers, Antonia A1 - Zachow, Stefan A1 - Kaup, Thomas A1 - Schramm, Alexander A1 - Noser, Hansrudi A1 - Hammer, Beat T1 - A method for the three-dimensional statistical shape analysis of the bony orbit JF - Proc. Computer Aided Surgery around the Head Y1 - 2007 SP - 94 EP - 97 ER - TY - JOUR A1 - Zachow, Stefan A1 - Muigg, Philipp A1 - Hildebrandt, Thomas A1 - Doleisch, Helmut A1 - Hege, Hans-Christian T1 - Visual Exploration of Nasal Airflow JF - IEEE Transactions on Visualization and Computer Graphics Y1 - 2009 U6 - https://doi.org/10.1109/TVCG.2009.198 VL - 15 IS - 8 SP - 1407 EP - 1414 ER - TY - JOUR A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Seim, Heiko A1 - Zachow, Stefan T1 - Multi-object segmentation of head bones JF - MIDAS Journal Y1 - 2009 ER - TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - A System for Unsupervised Extraction of Orthopaedic Parameters from CT Data T2 - GI Workshop Softwareassistenten - Computerunterstützung für die medizinische Diagnose und Therapieplanung Y1 - 2009 SP - 1328 EP - 1337 CY - Lübeck, Germany ER - TY - JOUR A1 - Heppt, Werner A1 - Hildebrandt, Thomas A1 - Steinmann, Alexander A1 - Zachow, Stefan T1 - Aesthetic and Function in Rhinoplasty JF - Springer Journal Y1 - 2007 VL - 264 (Suppl 1), RL 126 SP - 307 ER - TY - CHAP A1 - Zachow, Stefan A1 - Zilske, Michael A1 - Hege, Hans-Christian T1 - 3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing T2 - 25. ANSYS Conference & CADFEM Users’ Meeting Y1 - 2007 CY - Dresden ER - TY - JOUR A1 - Gessat, Michael A1 - Zachow, Stefan A1 - Burgert, Oliver A1 - Lemke, Heinz T1 - Geometric Meshes in Medical Applications - Steps towards a specification of Geometric Models in DICOM JF - Int. J. of Computer Assisted Radiology and Surgery (CARS) Y1 - 2007 U6 - https://doi.org/10.1007/s11548-007-0112-6 SP - 440 EP - 442 ER - TY - JOUR A1 - Hildebrandt, Thomas A1 - Zachow, Stefan A1 - Steinmann, Alexander A1 - Heppt, Werner T1 - Innovation in der Funktionell-Ästhetischen Nasenchirurgie: Rhino-CFD JF - Face, Int. Mag. of Orofacial Esthetics Y1 - 2007 SP - 20 EP - 23 PB - Oemus Journale Leipzig ER - TY - GEN A1 - Kamer, Lukas A1 - Noser, Hansrudi A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Wittmers, Antonia A1 - Kaup, Thomas A1 - Schramm, Alexander A1 - Hammer, Beat T1 - Three-dimensional statistical shape analysis - A useful tool for developing a new type of orbital implant? Y1 - 2006 SP - 20 EP - 21 PB - AO Development Institute, New Products Brochure 2/06 ER - TY - CHAP A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Computergestützte Operationsplanung in der Gesichtschirurgie T2 - Proc. VDE Kongress 2004 - Innovationen für Menschen, Band 2, Fachtagungsberichte DGBMT - GMM - GMA Y1 - 2004 SP - 53 EP - 58 ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - A quantitative evaluation of 3D soft tissue prediction in maxillofacial surgery planning T2 - Proc. 3. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboter-assistierte Chirurgie e.V. Y1 - 2004 CY - München ER - TY - JOUR A1 - Hierl, Thomas A1 - Zachow, Stefan A1 - Wollny, Gert A1 - Berti, Guntram A1 - Schmidt, Jens-Georg A1 - Fingberg, Jochen T1 - Computer-based simulation in distraction osteogenesis JF - Proc. of 3rd Int. Oxford Distraction Symposium of the Craniofacial Skeleton Y1 - 2004 SP - 33 EP - 34 ER - TY - JOUR A1 - Hierl, Thomas A1 - Zachow, Stefan A1 - Wollny, Gert A1 - Berti, Guntram A1 - Schmidt, Jens-Georg A1 - Fingberg, Jochen T1 - Concepts of computer-based simulation in orthognathic surgery JF - Journal of Cranio-Maxillofacial Surgery 32 Suppl. 1 Y1 - 2004 SP - 81 EP - 82 ER - TY - JOUR A1 - Haberl, Hannes A1 - Hell, Bertold A1 - Zöckler, Maja A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Sarrafzadeh, Asita A1 - Riecke, B. A1 - Langsch, Wolfgang A1 - Deuflhard, Peter A1 - Bier, Jürgen A1 - Brock, Mario T1 - Technical aspects and results of surgery for craniosynostosis JF - Zentralblatt für Neurochirurgie Y1 - 2004 VL - 65 IS - 2 SP - 65 EP - 74 ER - TY - JOUR A1 - Nkenke, Emeka A1 - Zachow, Stefan A1 - Benz, Michaela A1 - Maier, Tobias A1 - Veit, Klaus A1 - Kramer, Manuel A1 - Benz, St. A1 - Häusler, Gerd A1 - Neukam, Friedrich A1 - Lell, Michael T1 - Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery JF - Journal of Dento-Maxillofacial Radiology Y1 - 2004 U6 - https://doi.org/10.1259/dmfr/27071199 VL - 33 SP - 226 EP - 232 ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - On the Predictability of tissue changes after osteotomy planning in maxillofacial surgery T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2004 U6 - https://doi.org/10.1016/j.ics.2004.03.043 SP - 648 EP - 653 CY - Chicago, USA ER - TY - CHAP A1 - Zachow, Stefan A1 - Hierl, Thomas A1 - Erdmann, Bodo T1 - Über die Genauigkeit einer 3D Weichgewebeprädiktion in der MKG-Cirurgie T2 - Workshop ’Bildverarbeitung für die Medizin’ (BVM) Y1 - 2004 SP - 75 EP - 79 CY - Berlin, Germany ER - TY - CHAP A1 - Lamecker, Hans A1 - Zöckler, Maja A1 - Haberl, Hannes A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - Statistical shape modeling for craniosynostosis planning T2 - 2nd International Conference Advanced Digital Technology in Head and Neck Reconstruction 2005, Abstract Volume Y1 - 2005 SP - 64 CY - Banff, Alberta ER - TY - JOUR A1 - Westermark, Anders A1 - Zachow, Stefan A1 - Eppley, Barry T1 - 3D osteotomy planning in maxillofacial surgery, including 3D soft tissue prediction JF - Journal of Craniofacial Surgery Y1 - 2005 VL - 16(1) SP - 100 EP - 104 ER - TY - JOUR A1 - Zachow, Stefan A1 - Hege, Hans-Christian A1 - Deuflhard, Peter T1 - Maxillofacial surgery planning with 3D soft tissue prediction - modeling, planning, simulation JF - 2. Int. Conf. on Advanced Digital Technology in Head and Neck Reconstruction, Abstract 33 Y1 - 2005 SP - 64 CY - Banff, Alberta, CA ER - TY - JOUR A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Haberl, Hannes A1 - Stiller, Michael T1 - Medical applications for statistical shape models JF - Computer Aided Surgery around the Head, Fortschritt-Berichte VDI - Biotechnik/Medizintechnik Y1 - 2005 VL - 17 (258) SP - 61 ER - TY - CHAP A1 - Zachow, Stefan A1 - Lamecker, Hans A1 - Elsholtz, Barbara A1 - Stiller, Michael T1 - Reconstruction of mandibular dysplasia using a statistical 3D shape model T2 - Proc. Computer Assisted Radiology and Surgery (CARS) Y1 - 2005 U6 - https://doi.org/10.1016/j.ics.2005.03.339 SP - 1238 EP - 1243 CY - Berlin, Germany ER - TY - CHAP A1 - Nkenke, Emeka A1 - Häusler, Gerd A1 - Neukam, Friedrich A1 - Zachow, Stefan T1 - Streak artifact correction of CT data by optical 3D imaging in the simulation of orthognathic surgery T2 - Computer Assisted Radiology and Surgery (CARS) Y1 - 2005 U6 - https://doi.org/doi:10.1016/j.ics.2005.03.278 CY - Berlin Germany ER - TY - CHAP A1 - Nkenke, Emeka A1 - Zachow, Stefan A1 - Häusler, Gerd T1 - Fusion von optischen 3D- und CT-Daten des Gebisses zur Metallartefaktkorrektur vor computerassistierter Planung MKG-chirurgischer Eingriffe T2 - Symposium der Arbeitsgemeinschaf für Kieferchirurgie Y1 - 2005 CY - Bad Homburg v.d.H ER - TY - GEN A1 - Wilson, David A1 - Bücher, Pia A1 - Grewe, Carl Martin A1 - Anglin, Carolyn A1 - Zachow, Stefan A1 - Michael, Dunbar T1 - Validation of Three Dimensional Models of the Distal Femur Created from Surgical Navigation Point Cloud Data T2 - 15th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) Y1 - 2015 ER - TY - CHAP A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - 3D Assessment of Osteosynthesis based on 2D Radiographs T2 - Proceedings of the Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC) N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient- specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery. KW - 3d-reconstruction from 2d X-rays KW - osteosynthesis follow-up KW - statistical shape and intensity models Y1 - 2015 SP - 317 EP - 321 ER - TY - GEN A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - 3D Assessment of Osteosynthesis based on 2D Radiographs N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient-specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery. T3 - ZIB-Report - 15-47 KW - 3d-reconstruction from 2d X-rays KW - statistical shape and intensity models KW - osteosynthesis follow-up Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56217 SN - 1438-0064 ER - TY - CHAP A1 - Krämer, Martin A1 - Herrmann, Karl-Heinz A1 - Boeth, Heide A1 - Tycowicz, Christoph von A1 - König, Christian A1 - Zachow, Stefan A1 - Ehrig, Rainald A1 - Hege, Hans-Christian A1 - Duda, Georg A1 - Reichenbach, Jürgen T1 - Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup T2 - ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada Y1 - 2015 ER - TY - CHAP A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - Assessing the relative positioning of an osteosynthesis plate to the patient-specific femoral shape from plain 2D radiographs T2 - Proceedings of the 15th Annual Meeting of CAOS-International (CAOS) N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing. KW - 3d-­reconstruction from 2d X­rays KW - statistical shape and intensity models KW - fracture fixation of the distal femur KW - pose estimation Y1 - 2015 ER - TY - GEN A1 - Ehlke, Moritz A1 - Heyland, Mark A1 - Märdian, Sven A1 - Duda, Georg A1 - Zachow, Stefan T1 - Assessing the Relative Positioning of an Osteosynthesis Plate to the Patient-Specific Femoral Shape from Plain 2D Radiographs N2 - We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing. T3 - ZIB-Report - 15-21 KW - 3d-­reconstruction from 2d X­rays KW - statistical shape and intensity models KW - fracture fixation of the distal femur KW - pose estimation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54268 SN - 1438-0064 ER - TY - JOUR A1 - Campoli, Gianni A1 - Baka, Nora A1 - Kaptein, Bart A1 - Valstar, Edward A1 - Zachow, Stefan A1 - Weinans, Harrie A1 - Zadpoor, Amir Abbas T1 - Relationship between the shape and density distribution of the femur and its natural frequencies of vibration JF - Journal of Biomechanics N2 - It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies. Y1 - 2014 U6 - https://doi.org/10.1016/j.jbiomech.2014.08.008 VL - 47 SP - 3334 EP - 3343 PB - Elsevier ER - TY - JOUR A1 - Hochfeld, Mascha A1 - Lamecker, Hans A1 - Thomale, Ulrich W. A1 - Schulz, Matthias A1 - Zachow, Stefan A1 - Haberl, Hannes T1 - Frame-based cranial reconstruction JF - Journal of Neurosurgery: Pediatrics N2 - The authors report on the first experiences with the prototype of a surgical tool for cranial remodeling. The device enables the surgeon to transfer statistical information, represented in a model, into the disfigured bone. The model is derived from a currently evolving databank of normal head shapes. Ultimately, the databank will provide a set of standard models covering the statistical range of normal head shapes, thus providing the required template for any standard remodeling procedure as well as customized models for intended overcorrection. To date, this technique has been used in the surgical treatment of 14 infants (age range 6-12 months) with craniosynostosis. In all 14 cases, the designated esthetic result, embodied by the selected model, has been achieved, without morbidity or mortality. Frame-based reconstruction provides the required tools to precisely realize the surgical reproduction of the model shape. It enables the establishment of a self-referring system, feeding back postoperative growth patterns, recorded by 3D follow-up, into the model design. Y1 - 2014 U6 - https://doi.org/10.3171/2013.11.PEDS1369 VL - 13 IS - 3 SP - 319 EP - 323 ER - TY - JOUR A1 - Lemanis, Robert A1 - Zachow, Stefan A1 - Fusseis, Florian A1 - Hoffmann, René T1 - A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells JF - Paleobiology N2 - The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell. Y1 - 2015 U6 - https://doi.org/10.1017/pab.2014.17 VL - 41 IS - 2 SP - 313 EP - 329 PB - Cambridge University Press CY - Cambridge ER - TY - CHAP A1 - Ehlke, Moritz A1 - Frenzel, Thomas A1 - Ramm, Heiko A1 - Shandiz, Mohsen Akbari A1 - Anglin, Carolyn A1 - Zachow, Stefan T1 - Towards Robust Measurement Of Pelvic Parameters From AP Radiographs Using Articulated 3D Models T2 - Computer Assisted Radiology and Surgery (CARS) N2 - Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph. KW - Articulated Models, Statistical Shape And Intensity Models, 2D/3D Anatomy Reconstruction, Pelvic Parameters Measurement, Total Hip Arthroplasty Y1 - 2015 ER - TY - GEN A1 - Ehlke, Moritz A1 - Frenzel, Thomas A1 - Ramm, Heiko A1 - Shandiz, Mohsen Akbari A1 - Anglin, Carolyn A1 - Zachow, Stefan T1 - Towards Robust Measurement of Pelvic Parameters from AP Radiographs using Articulated 3D Models N2 - Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph. T3 - ZIB-Report - 15-11 KW - Articulated Models, Statistical Shape And Intensity Models, 2D/3D Anatomy Reconstruction, Pelvic Parameters Measurement, Total Hip Arthroplasty Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53707 SN - 1438-0064 ER -