TY - GEN A1 - Arnold, Thomas A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Henrion, René A1 - Grötschel, Martin A1 - Koch, Thorsten A1 - Tischendorf, Caren A1 - Römisch, Werner ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs T2 - MATHEON - Mathematics for Key Technologies N2 - Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de Y1 - 2014 U6 - https://doi.org/10.4171/137 VL - 1 SP - 135 EP - 146 PB - European Mathematical Society ER - TY - GEN A1 - Arnold, Thomas A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Henrion, René A1 - Grötschel, Martin A1 - Koch, Thorsten A1 - Tischendorf, Caren A1 - Römisch, Werner T1 - A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs N2 - Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de T3 - ZIB-Report - 14-14 KW - gas transport optimization KW - mixed integer nonlinear programming Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49947 SN - 1438-0064 ER - TY - GEN A1 - Ballerstein, Martin A1 - Michaels, Dennis A1 - Vigerske, Stefan T1 - Linear Underestimators for bivariate functions with a fixed convexity behavior N2 - This is a technical report for the SCIP constraint handler cons_bivariate. We describe a cut-generation algorithm for a class of bivariate twice continuously differentiable functions with fixed convexity behavior over a box. Computational results comparing our cut-generation algorithms with state-of-the-art global optimization software on a series of randomly generated test instances are reported and discussed. T3 - ZIB-Report - 13-02 KW - bivariate functions KW - convex envelope KW - global optimization KW - linear underestimator Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17641 SN - 1438-0064 ER - TY - JOUR A1 - Bernal, David E. A1 - Vigerske, Stefan A1 - Trespalacios, Francisco A1 - Grossmann, Ignacio E. T1 - Improving the performance of DICOPT in convex MINLP problems using a feasibility pump JF - Optimization Methods and Software N2 - The solver DICOPT is based on an outer-approximation algorithm used for solving mixed- integer nonlinear programming (MINLP) problems. This algorithm is very effective for solving some types of convex MINLPs. However, there are certain problems that are diffcult to solve with this algorithm. One of these problems is when the nonlinear constraints are so restrictive that the nonlinear subproblems produced by the algorithm are infeasible. This problem is addressed in this paper with a feasibility pump algorithm, which modifies the objective function in order to efficiently find feasible solutions. It has been implemented as a preprocessing algorithm for DICOPT. Computational comparisons with previous versions of DICOPT and other MINLP solvers on a set of convex MINLPs demonstrate the effectiveness of the proposed algorithm in terms of solution quality and solving time. Y1 - 2017 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - JOUR A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components JF - Numerical Algebra, Control and Optimization N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. Y1 - 2012 U6 - https://doi.org/10.3934/naco.2012.2.739 VL - 2 IS - 4 SP - 739 EP - 748 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - On the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 11-01 KW - MIQCP KW - MIP KW - mixed-integer quadratically constrained programming KW - computational KW - nonconvex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11998 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. T3 - ZIB-Report - 11-21 KW - Large Neighborhood Search KW - Primal Heuristic KW - MIP KW - MIQCP KW - Pseudo-Boolean Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12989 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP T2 - Proceedings of the 9th Metaheuristics International Conference (MIC 2011) N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. Y1 - 2011 SN - 978-88-900984-3-7 SP - 51 EP - 60 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Extending a CIP framework to solve MIQCPs N2 - This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach. T3 - ZIB-Report - 09-23 KW - mixed integer quadratically constrained programming KW - constraint integer programming KW - convex relaxation KW - nonconvex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11371 SN - 1438-0064 ER -