TY - JOUR A1 - Mollenhauer, Mattes A1 - Klus, Stefan A1 - Schütte, Christof A1 - Koltai, Péter T1 - Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence JF - Journal of Machine Learning Research N2 - We consider autocovariance operators of a stationary stochastic process on a Polish space that is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates of these operators converge along realizations of the process under various conditions. In particular, we examine ergodic and strongly mixing processes and obtain several asymptotic results as well as finite sample error bounds. We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities. Finally, we use our approach to examine the nonparametric estimation of Markov transition operators and highlight how our theory can give a consistency analysis for a large family of spectral analysis methods including kernel-based dynamic mode decomposition. Y1 - 2022 UR - https://jmlr.org/papers/v23/20-442.html VL - 23 IS - 327 SP - 1 EP - 34 ER - TY - GEN A1 - Schütte, Christof A1 - Klus, Stefan A1 - Hartmann, Carsten T1 - Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning N2 - One of the main challenges in molecular dynamics is overcoming the “timescale barrier”, a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject. T3 - ZIB-Report - 22-25 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88637 SN - 1438-0064 ER - TY - JOUR A1 - Gelß, Patrick A1 - Klus, Stefan A1 - Knebel, Sebastian A1 - Shakibaei, Zarin A1 - Pokutta, Sebastian T1 - Low-Rank Tensor Decompositions of Quantum Circuits JF - Journal of Computational Physics N2 - Quantum computing is arguably one of the most revolutionary and disruptive technologies of this century. Due to the ever-increasing number of potential applications as well as the continuing rise in complexity, the development, simulation, optimization, and physical realization of quantum circuits is of utmost importance for designing novel algorithms. We show how matrix product states (MPSs) and matrix product operators (MPOs) can be used to express certain quantum states, quantum gates, and entire quantum circuits as low-rank tensors. This enables the analysis and simulation of complex quantum circuits on classical computers and to gain insight into the underlying structure of the system. We present different examples to demonstrate the advantages of MPO formulations and show that they are more efficient than conventional techniques if the bond dimensions of the wave function representation can be kept small throughout the simulation. Y1 - 2022 ER - TY - JOUR A1 - Klus, Stefan A1 - Djurdjevac Conrad, Natasa T1 - Koopman-based spectral clustering of directed and time-evolving graphs JF - Journal of Nonlinear Science N2 - While spectral clustering algorithms for undirected graphs are well established and have been successfully applied to unsupervised machine learning problems ranging from image segmentation and genome sequencing to signal processing and social network analysis, clustering directed graphs remains notoriously difficult. Two of the main challenges are that the eigenvalues and eigenvectors of graph Laplacians associated with directed graphs are in general complex-valued and that there is no universally accepted definition of clusters in directed graphs. We first exploit relationships between the graph Laplacian and transfer operators and in particular between clusters in undirected graphs and metastable sets in stochastic dynamical systems and then use a generalization of the notion of metastability to derive clustering algorithms for directed and time-evolving graphs. The resulting clusters can be interpreted as coherent sets, which play an important role in the analysis of transport and mixing processes in fluid flows. Y1 - 2022 U6 - https://doi.org/10.1007/s00332-022-09863-0 VL - 33 ER -