TY - CHAP A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-Based Primal Heuristics for Mixed Integer Programming T2 - Optimization in the Real World N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time. Y1 - 2015 SN - 978-4-431-55419-6 U6 - https://doi.org/10.1007/978-4-431-55420-2_3 VL - 13 SP - 37 EP - 53 PB - Springer Japan ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael ED - IEEE, T1 - Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update T2 - IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops Y1 - 2014 SN - 978-1-4799-4117-9 U6 - https://doi.org/10.1109/IPDPSW.2014.174 SP - 1552 EP - 1561 PB - IEEE Computer Society CY - Washington, DC, USA ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Lübbecke, Marco A1 - Möhring, Rolf A1 - Schulz, Jens ED - Lodi, Andrea ED - Milano, Michela ED - Toth, Paolo T1 - A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling T2 - Proc. of CPAIOR 2010 Y1 - 2010 VL - 6140 SP - 313 EP - 317 PB - Springer ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc ED - Kullmann, Oliver T1 - Nonlinear pseudo-Boolean optimization T2 - Theory and Applications of Satisfiability Testing – SAT 2009 Y1 - 2009 VL - 5584 SP - 441 EP - 446 PB - Springer ER - TY - CHAP A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Experiments with Conflict Analysis in Mixed Integer Programming T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017 N2 - The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving. Y1 - 2017 U6 - https://doi.org/10.1007/978-3-319-59776-8_17 VL - 10335 SP - 211 EP - 222 PB - Springer ER - TY - CHAP A1 - Krämer, Martin A1 - Herrmann, Karl-Heinz A1 - Boeth, Heide A1 - Tycowicz, Christoph von A1 - König, Christian A1 - Zachow, Stefan A1 - Ehrig, Rainald A1 - Hege, Hans-Christian A1 - Duda, Georg A1 - Reichenbach, Jürgen T1 - Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup T2 - ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada Y1 - 2015 ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-based primal heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time. T3 - ZIB-Report - 15-26 KW - mixed-integer programming, large neighborhood search, primal heuristics, domain propagation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55518 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Computational Aspects of Infeasibility Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress. T3 - ZIB-Report - 19-54 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74962 SN - 1438-0064 ER - TY - JOUR A1 - Shinano, Yuji A1 - Berthold, Timo A1 - Heinz, Stefan T1 - ParaXpress: An Experimental Extension of the FICO Xpress-Optimizer to Solve Hard MIPs on Supercomputers JF - Optimization Methods & Software N2 - The Ubiquity Generator (UG) is a general framework for the external parallelization of mixed integer programming (MIP) solvers. In this paper, we present ParaXpress, a distributed memory parallelization of the powerful commercial MIP solver FICO Xpress. Besides sheer performance, an important feature of Xpress is that it provides an internal parallelization for shared memory systems. When aiming for a best possible performance of ParaXpress on a supercomputer, the question arises how to balance the internal Xpress parallelization and the external parallelization by UG against each other. We provide computational experiments to address this question and we show computational results for running ParaXpress on a Top500 supercomputer, using up to 43,344 cores in parallel. Y1 - 2018 U6 - https://doi.org/10.1080/10556788.2018.1428602 VL - 33 IS - 3 SP - 530 EP - 539 ER - TY - JOUR A1 - Berthold, Timo A1 - Farmer, James A1 - Heinz, Stefan A1 - Perregaard, Michael T1 - Parallelization of the FICO Xpress Optimizer JF - Optimization Methods and Software N2 - Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software – ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251–258] containing more detailed technical descriptions, illustrative examples and updated computational results. Y1 - 2018 U6 - https://doi.org/10.1080/10556788.2017.1333612 VL - 33 IS - 3 SP - 518 EP - 529 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores N2 - Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 20-16 KW - Mixed Integer Programming, Parallel processing, Node merging, Racing, ParaSCIP, Ubiquity Generator Framework, MIPLIB Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78393 SN - 1438-0064 ER - TY - CHAP A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019 N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-19212-9_6 VL - 11494 SP - 84 EP - 94 PB - Springer ER - TY - JOUR A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming JF - Mathematical Programming Computation N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 % of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. Y1 - 2019 U6 - https://doi.org/10.1007/s12532-019-00159-1 VL - 11 IS - 4 SP - 675 EP - 702 PB - Springer CY - Berlin Heidelberg ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. T3 - ZIB-Report - 18-57 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71170 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. T3 - ZIB-Report - 17-56 KW - mixed-integer programming KW - primal heuristics KW - fix-and-propagate KW - large neighborhood search KW - domain propagation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65387 SN - 1438-0064 ER - TY - GEN A1 - Bertelmann, Roland A1 - Koch, Thorsten A1 - Ceynowa, Klaus A1 - Söllner, Konstanze A1 - Christof, Jürgen A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Putnings, Markus A1 - Pampel, Heinz A1 - Kuberek, Monika A1 - Boltze, Julia A1 - Lohrum, Stefan A1 - Retter, Regina A1 - Höllerl, Annika A1 - Faensen, Katja A1 - Steffen, Ronald A1 - Gross, Matthias A1 - Hoffmann, Cornelia A1 - Haoua, Marsa T1 - DeepGreen: Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen für wissenschaftliche Publikationen – Abschlussbericht N2 - DeepGreen wurde vom 01.08.2018 bis zum 30.06.2021 in einer zweiten Projektphase von der Deutschen Forschungsgemeinschaft (DFG) gefördert. DeepGreen unterstützt Bibliotheken als Dienstleister für Hochschulen, außeruniversitäre Forschungseinrichtungen und die dort tätigen Wissenschaftler:innen dabei, Publikationen auf Open-Access-Repositorien frei zugänglich zu machen und fördert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. An der zweiten Projektphase waren der Kooperative Bibliotheksverbund Berlin-Brandenburg, die Bayerische Staatsbibliothek, der Bibliotheksverbund Bayern, die Universitätsbibliotheken der Friedrich-Alexander-Universität Erlangen-Nürnberg und der Technischen Universität Berlin und das Helmholtz Open Science Office beteiligt. In dem Projekt wurde erfolgreich eine technische und organisatorische Lösung zur automatisierten Verteilung von Artikeldaten wissenschaftlicher Verlage an institutionelle und fachliche Repositorien entwickelt. In der zweiten Projektphase lag der Fokus auf der Erprobung der Datendrehscheibe in der Praxis und der Ausweitung auf weitere Datenabnehmer und weitere Verlage. Im Anschluss an die DFG-geförderte Projektlaufzeit ist DeepGreen in einen zweijährigen Pilotbetrieb übergegangen. Ziel des Pilotbetriebs ist es, den Übergang in einen bundesweiten Real-Betrieb vorzubereiten. T3 - ZIB-Report - 21-37 KW - Open Access KW - Repositorien KW - DeepGreen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85420 SN - 1438-0064 ER - TY - JOUR A1 - Boltze, Julia A1 - Höllerl, Annika A1 - Kuberek, Monika A1 - Lohrum, Stefan A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Retter, Regina A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Söllner, Konstanze T1 - DeepGreen: Eine Infrastruktur für die Open-Access-Transformation JF - O-Bib. Das Offene Bibliotheksjournal N2 - Mit DeepGreen wurde eine Infrastruktur aufgebaut und etabliert, die Zeitschriftenartikel von wissenschaftlichen Verlagen abholt und berechtigten Bibliotheken zur Veröffentlichung in ihren Repositorien sendet. DeepGreen unterstützt Bibliotheken als Dienstleister für Hochschulen, außeruniversitäre Einrichtungen und die dort tätigen Wissenschaftler*innen, Publikationen auf Open-Access-Repositorien frei zugänglich zu machen und fördert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. DeepGreen wurde von Januar 2016 bis Juni 2021 von der Deutschen Forschungsgemeinschaft gefördert und wird nun vom Kooperativen Bibliotheksverbund Berlin-Brandenburg, von der Bayerischen Staatsbibliothek und von der Universitätsbibliothek Erlangen-Nürnberg in arbeitsteiliger Eigenleistung für zwei Jahre weiterbetrieben. Der vorliegende Beitrag beleuchtet vielfältige Aspekte bei der Realisierung von DeepGreen und geht auf die Perspektiven dieser zentralen Open-Access-Infrastruktur für deutsche Wissenschaftseinrichtungen ein. Y1 - 2022 U6 - https://doi.org/10.5282/o-bib/5764 VL - 9 IS - 1 ER - TY - GEN A1 - Bertelmann, Roland A1 - Boltze, Julia A1 - Ceynowa, Klaus A1 - Christof, Jürgen A1 - Faensen, Katja A1 - Groß, Matthias A1 - Hoffmann, Cornelia A1 - Koch, Thorsten A1 - Kuberek, Monika A1 - Lohrum, Stefan A1 - Pampel, Heinz A1 - Putnings, Markus A1 - Retter, Regina A1 - Rusch, Beate A1 - Schäffler, Hildegard A1 - Söllner, Konstanze A1 - Steffen, Ronald A1 - Wannick, Eike T1 - DeepGreen: Open-Access-Transformation in der Informationsinfrastruktur – Anforderungen und Empfehlungen, Version 1.0 N2 - DeepGreen ist ein Service, der es teilnehmenden institutionellen Open-Access-Repositorien,Open-Access-Fachrepositorien und Forschungsinformationssystemen erleichtert, für sie relevante Verlagspublikationen in zyklischer Abfolge mithilfe von Schnittstellen Open Access zur Verfügung zu stellen. Die entsprechende Bandbreite an Relationen zwischen den Akteuren, diverse lizenzrechtliche Rahmenbedingungen sowie technische Anforderungen gestalten das Thema komplex. Ziel dieser Handreichung ist es, neben all diesen Themen, die begleitend beleuchtet werden, im Besonderen Empfehlungen für die reibungslose Nutzung der Datenübertragung zu liefern. Außerdem werden mithilfe einer vorangestellten Workflow- Evaluierung Unterschiede und Besonderheiten in den Arbeitsschritten bei institutionellen Open-Access-Repositorien und Open-Access-Fachrepositorien aufgezeigt und ebenfalls mit Empfehlungen angereichert. T3 - ZIB-Report - 21-03 KW - Open Access KW - Zweitveröffentlichung KW - Bibliotheken KW - Verlage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81503 SN - 1438-0064 ER -