TY - JOUR A1 - Iravani, Sahar A1 - Conrad, Tim T1 - An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data JF - IEEE/ACM Transactions on Computational Biology and Bioinformatics N2 - Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other established methods is that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false positive peaks while maintaining a comparable amount of true positives peaks. Y1 - 2023 U6 - https://doi.org/10.1109/tcbb.2022.3141656 VL - 20 IS - 1 SP - 151 EP - 161 ER - TY - THES A1 - Iravani, Sahar T1 - Interpretable Deep Learning Approaches for Biomarker Detection from High-Dimensional Biomedical Data Y1 - 2022 ER - TY - CHAP A1 - Iravani, Sahar A1 - Conrad, Tim ED - Holzinger, A. ED - Kieseberg, P. ED - Tjoa, A. ED - Weippl, E. T1 - Deep Learning for Proteomics Data for Feature Selection and Classification T2 - Machine Learning and Knowledge Extraction. CD-MAKE 2019 Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-29726-8_19 VL - 11713 PB - Springer, Cham ER -