TY - JOUR A1 - Tawfik, Christine A1 - Limbourg, Sabine T1 - A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment JF - Transportation Science N2 - Within a wide view to stimulate intermodal transport, this paper is devoted to the examination of the intrinsically related problems of designing freight carrying services and determining their associated prices as observed by the shipper firms. A path-based multicommodity formulation is developed for a medium-term planning horizon, from the perspective of an intermodal operator. In the quest of incorporating nonprice attributes, two approaches are proposed to depict a realistic assessment of the service quality. First, frequency delay constraints are added to the upper level problem. Second, based on a random utility model, behavioural concepts are integrated in the expression of the lower level as a logistics costs minimization problem. Exact tests are invoked on real-world instances, demonstrating the capability of the presented approaches of reaching reasonable results within acceptable computation times and optimality gaps. The broader level-of-service perspective imposes additional costs on the service providers, although to a lesser extent on long-distance freight corridors, as indicated by the computed market share and net profit. Further experiments are conducted to test the impact of certain transport management instruments (e.g. subsidies and service capacities) on the modal split, as well as to assess the intermodality’s future based on a scenario analysis methodology. Y1 - 2019 U6 - https://doi.org/10.1287/trsc.2019.0906 VL - 53 IS - 6 SP - 1609 EP - 1626 PB - Informs CY - Transportation Science ER - TY - JOUR A1 - Tawfik, Christine A1 - Gendron, Bernard A1 - Limbourg, Sabine T1 - An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model JF - European Journal of Operational Research N2 - Building upon earlier research, we revisit a bilevel formulation of service design and pricing for freight networks, with the aim of investigating its algorithmic aspects. The model adds substantial computational challenges to the existing literature, as it deals with general integer network design variables. An iterative heuristic algorithm is introduced, based on the concepts of inverse optimization and neighbourhood search. The procedure alternates between two versions of restricted formulations of the model while inducing promising changes into the service assignments. The approach has proven a high performance for all of the considered real-world instances. Its efficiency rests on its ability to deliver results within a close proximity to those obtained by the exact solver in terms of quality, yet within a significantly smaller amount of time, and to land feasible solutions for the large-sized instances that could not be previously solved. In line with the sustainable transport goals, a deeper observation of the transport management side highlights the strategy of the algorithm favouring freight consolidation and achieving high load factors. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.ejor.2021.07.052 PB - Elsevier CY - European Journal of Operational Research ER -