TY - CHAP A1 - Joachimsky, Robert A1 - Ma, Lihong A1 - Icking, Christian A1 - Zachow, Stefan T1 - A Collision-Aware Articulated Statistical Shape Model of the Human Spine T2 - Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC) N2 - Statistical Shape Models (SSMs) are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models to which implants can be adapted to or functional tests can be performed on. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of our work was to develop aSSMs that handle collisions between components correctly. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation, our approach is based on an e� cient collision detection method employing Graphics Processing Units (GPUs). Y1 - 2019 SP - 58 EP - 64 ER - TY - THES A1 - Joachimsky, Robert T1 - Approaching Spinal Kinematics using a Collision-Aware Articulated Deformable Model N2 - Statistical Shape Models (SSMs) allow for a compact representation of shape and shape variation and they are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models. The human spine is a versatile and complex articulated structure and thus is an interesting candidate to be modeled using an advanced type of SSMs. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of this thesis is to develop an aSSM of two adjacent vertebrae that handles collisions between components correctly. The model will incorporate the two major aspects of variability: Shape of a single vertebra and the relative positioning of neighboring vertebrae. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation in future work, the approach is based on a parallelized collision detection method employing Graphics Processing Units (GPUs). KW - Spine Modeling KW - Spinal Kinematics KW - GPU-Accelerated Collision Detection KW - Spherical Shell Y1 - 2019 ER -