TY - JOUR A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 JF - Mathematical Programming Computation Y1 - 2011 UR - http://mpc.zib.de/index.php/MPC/article/view/56 U6 - https://doi.org/10.1007/s12532-011-0025-9 VL - 3 IS - 2 SP - 103 EP - 163 ER - TY - JOUR A1 - Achterberg, Tobias A1 - Bixby, Robert E. A1 - Gu, Zonghao A1 - Rothberg, Edward A1 - Weninger, Dieter T1 - Presolve Reductions in Mixed Integer Programming JF - INFORMS Journal on Computing N2 - Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature. Y1 - 2019 ER - TY - GEN A1 - Achterberg, Tobias A1 - Bixby, Robert E. A1 - Gu, Zonghao A1 - Rothberg, Edward A1 - Weninger, Dieter T1 - Presolve Reductions in Mixed Integer Programming N2 - Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature. T3 - ZIB-Report - 16-44 KW - integer programming KW - presolving KW - Gurobi Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60370 SN - 1438-0064 ER -