TY - GEN A1 - Djurdjevac Conrad, Natasa A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Modularity of Directed Networks: Cycle Decomposition Approach N2 - The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarsegrained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network. T3 - ZIB-Report - 14-31 KW - directed networks, modules, cycle decomposition, measure of node communication Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-51166 SN - 1438-0064 ER - TY - GEN A1 - Banisch, Ralf A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Module Detection in Directed Real-World Networks N2 - We investigate the problem of finding modules (or clusters, communities) in directed networks. Until now, most articles on this topic have been oriented towards finding complete network partitions despite the fact that this often is unwanted. We present a novel random walk based approach for non-complete partitions of the directed network into modules in which some nodes do not belong to only one of the modules but to several or to none at all. The new random walk process is reversible even for directed networks but inherits all necessary information about directions and structure of the original network. We demonstrate the performance of the new method in application to a real-world earthquake network. T3 - ZIB-Report - 14-13 KW - Module identification and classification KW - cycle decomposition KW - communication KW - directed networks Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49849 SN - 1438-0064 ER - TY - GEN A1 - Bittracher, Andreas A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Data-driven Computation of Molecular Reaction Coordinates N2 - The identification of meaningful reaction coordinates plays a key role in the study of complex molecular systems whose essential dynamics is characterized by rare or slow transition events. In a recent publication, the authors identified a condition under which such reaction coordinates exist - the existence of a so-called transition manifold - and proposed a numerical method for their point-wise computation that relies on short bursts of MD simulations. This article represents an extension of the method towards practical applicability in computational chemistry. It describes an alternative computational scheme that instead relies on more commonly available types of simulation data, such as single long molecular trajectories, or the push-forward of arbitrary canonically-distributed point clouds. It is based on a Galerkin approximation of the transition manifold reaction coordinates, that can be tuned to individual requirements by the choice of the Galerkin ansatz functions. Moreover, we propose a ready-to-implement variant of the new scheme, that computes data-fitted, mesh-free ansatz functions directly from the available simulation data. The efficacy of the new method is demonstrated on a realistic peptide system. T3 - ZIB-Report - 17-77 KW - reaction coordinate KW - coarse graining KW - transition manifold KW - transfer operator KW - Galerkin method KW - meshfree basis KW - data-driven Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66179 SN - 1438-0064 ER - TY - JOUR A1 - Bittracher, Andreas A1 - Koltai, Péter A1 - Klus, Stefan A1 - Banisch, Ralf A1 - Dellnitz, Michael A1 - Schütte, Christof T1 - Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics JF - Jounal of Nonlinear Science N2 - We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics. Y1 - 2018 U6 - https://doi.org/10.1007/s00332-017-9415-0 VL - 28 IS - 2 SP - 471 EP - 512 ER - TY - JOUR A1 - Banisch, Ralf A1 - Djurdjevac Conrad, Natasa T1 - Cycle-flow-based module detection in directed recurrence networks JF - EPL (Europhysics Letters) Y1 - 2014 U6 - https://doi.org/10.1209/0295-5075/108/68008 VL - 108 IS - 6 ER - TY - JOUR A1 - Banisch, Ralf A1 - Djurdjevac Conrad, Natasa A1 - Schütte, Christof T1 - Reactive flows and unproductive cycles for random walks on complex networks JF - The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387 Y1 - 2015 U6 - https://doi.org/10.1140/epjst/e2015-02417-8 ER - TY - GEN A1 - Hartmann, Carsten A1 - Banisch, Ralf A1 - Sarich, Marco A1 - Badowski, Thomas A1 - Schütte, Christof T1 - Characterization of Rare Events in Molecular Dynamics N2 - A good deal of molecular dynamics simulations aims at predicting and quantifying rare events, such as the folding of a protein or a phase transition. Simulating rare events is often prohibitive, especially if the equations of motion are high-dimensional, as is the case in molecular dynamics. Various algorithms have been proposed for efficiently computing mean first passage times, transition rates or reaction pathways. This article surveys and discusses recent developments in the field of rare event simulation and outlines a new approach that combines ideas from optimal control and statistical mechanics. The optimal control approach described in detail resembles the use of Jarzynski's equality for free energy calculations, but with an optimized protocol that speeds up the sampling, while (theoretically) giving variance-free estimators of the rare events statistics. We illustrate the new approach with two numerical examples and discuss its relation to existing methods. T3 - ZIB-Report - 13-51 KW - rare events KW - moleculare dynamics KW - optimal pathways KW - stochastic control KW - dynamic programming KW - change of measure KW - cumulant generating function Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42410 SN - 1438-0064 ER - TY - GEN A1 - Sarich, Marco A1 - Banisch, Ralf A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Markov State Models for Rare Events in Molecular Dynamics N2 - Rare but important transition events between long lived states are a key feature of many molecular systems. In many cases the computation of rare event statistics by direct molecular dynamics (MD) simulations is infeasible even on the most powerful computers because of the immensely long simulation timescales needed. Recently a technique for spatial discretization of the molecular state space designed to help overcome such problems, so-called Markov State Models (MSMs), has attracted a lot of attention. We review the theoretical background and algorithmic realization of MSMs and illustrate their use by some numerical examples. Furthermore we introduce a novel approach to using MSMs for the efficient solution of optimal control problems that appear in applications where one desires to optimize molecular properties by means of external controls. T3 - ZIB-Report - 13-52 KW - rare events KW - Markov state models KW - long timescales KW - optimal control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42420 SN - 1438-0064 ER - TY - JOUR A1 - Hartmann, Carsten A1 - Banisch, Ralf A1 - Sarich, Marco A1 - Badowski, Thomas A1 - Schütte, Christof T1 - Characterization of Rare Events in Molecular Dynamics JF - Entropy (Special Issue) Y1 - 2013 U6 - https://doi.org/10.3390/e16010350 VL - 16 IS - 1 SP - 350 EP - 376 ER - TY - JOUR A1 - Sarich, Marco A1 - Banisch, Ralf A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Markov State Models for Rare Events in Molecular Dynamics JF - Entropy (Special Issue) Y1 - 2013 U6 - https://doi.org/10.3390/e16010258 VL - 16 IS - 1 SP - 258 EP - 286 ER -