TY - JOUR A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions JF - Optimization Methods and Software N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before. Y1 - 2014 U6 - https://doi.org/10.1080/10556788.2014.888426 PB - Taylor & Francis ER - TY - CHAP A1 - Martin, Alexander A1 - Geißler, Björn A1 - Heyn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen T2 - Optimierung in der Energiewirtschaft Y1 - 2011 SP - 105 EP - 114 PB - VDI-Verlag, Düsseldorf ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER - TY - GEN A1 - Martin, Alexander A1 - Geißler, Björn A1 - Hayn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen N2 - Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert. T3 - ZIB-Report - 11-56 KW - Gasnetzplanung KW - Technische Kapazitäten KW - Nominierungsvalidierung KW - Buchungsvalidierung KW - Topologieplanung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15121 SN - 1438-0064 ER - TY - GEN A1 - Pfetsch, Marc T1 - A Branch-And-Cut for the Maximum Feasible Subsystem Problem N2 - We present a branch-and-cut algorithm for the NP-hard maximum feasible subsystem problem: For a given infeasible linear inequality system, determine a feasible subsystem containing as many inequalities as possible. The complementary problem, where one has to remove as few inequalities as possible in order to render the system feasible, can be formulated as a set covering problem. The rows of this formulation correspond to irreducible infeasible subsystems, which can be exponentially many. The main issue of a branch-and-cut algorithm for MaxFS is to efficiently find such infeasible subsystems. We present three heuristics for the corresponding NP-hard separation problem and discuss further cutting planes. This paper contains an extensive computational study of our implementation on a variety of instances arising in a number of applications. T3 - ZIB-Report - 05-46 KW - infeasible linear inequality system KW - irreducible infeasible subsystem KW - (IIS) maximum feasible subsystem problem KW - minimum IIS-cover KW - branch-and-cut Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8797 ER - TY - GEN A1 - Joswig, Michael A1 - Pfetsch, Marc T1 - Computing Optimal Morse Matchings N2 - Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results. T3 - ZIB-Report - 04-37 KW - discrete Morse function KW - Morse matching Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8120 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc T1 - A Column-Generation Approach to Line Planning in Public Transport N2 - The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize operating costs, the passengers want to minimize travel times. We propose a n ew multi-commodity flow model for line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. We discuss properties of this model and investigate its complexity. Results with data for the city of Potsdam, Germany, are reported. T3 - ZIB-Report - 05-18 KW - line planning KW - column generation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8522 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Fare Planning for Public Transport N2 - In this paper we introduce the fare planning problem for public transport which consists in designing a system of fares maximizing revenue. We propose a new simple general model for this problem. It i s based on a demand function and constraints for the different fares. The constraints define the structure of the fare system, e.g., distance dependent fares or zone fares. We discuss a simple example with a quadratic demand function and distance dependent fares. Then we introduce a more realistic discrete choice model in which passengers choose between different alternatives depending on the numb er of trips per month. We demonstrate the examples by computational experiments. T3 - ZIB-Report - 05-20 KW - fare planning KW - demand function KW - discrete choice model Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8541 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc T1 - Public Transport to the fORe! N2 - Can OR methods help the public transport industry to break even? The article gives evidence that there exist significant potentials in this direction, which can be harnessed by a combination of modern mathematical methods and local planning knowledge. Many of the planning steps in public transport are classical combinatorial problems, which can be solved in unprecedented size and quality due the rapid progress in large-scale optimization. Three examples on vehicle scheduling, duty scheduling, and integrated vehicle and duty scheduling illustrate the level that has been reached and the improvements that can be achieved today. Extensions of such methods to further questions of strategic, online, and market-oriented planning are currently investigated. In this way, OR can make a significant contribution to answer the basic but extremely difficult question ``What is a good public transport network?. T3 - ZIB-Report - 05-22 KW - Public transport KW - vehicle scheduling KW - duty scheduling Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8562 UR - http://www.lionhrtpub.com/orms/orms-4-06/frtransport.html ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc T1 - Models for Line Planning in Public Transport N2 - The \emph{line planning problem} is one of the fundamental problems in strategic planning of public and rail transport. It consists of finding lines and corresponding frequencies in a public transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize its operating cost; the passengers request short travel times. We propose two new multi-commodity flow models for line planning. Their main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. T3 - ZIB-Report - 04-10 KW - line planning KW - column generation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7854 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - The Steiner Connectivity Problem N2 - The Steiner connectivity problem is a generalization of the Steiner tree problem. It consists in finding a minimum cost set of simple paths to connect a subset of nodes in an undirected graph. We show that polyhedral and algorithmic results on the Steiner tree problem carry over to the Steiner connectivity problem, namely, the Steiner cut and the Steiner partition inequalities, as well as the associated polynomial time separation algorithms, can be generalized. Similar to the Steiner tree case, a directed formulation, which is stronger than the natural undirected one, plays a central role. T3 - ZIB-Report - 09-07 KW - Steiner Tree KW - Partition Inequalities KW - Paths KW - Connectivity KW - Generalization Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11171 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Angebotsplanung im öffentlichen Nahverkehr T1 - Service Design in Public Transport N2 - Die Angebotsplanung im öffentlichen Nahverkehr umfasst die Aufgaben der Netz-, Linien-,Fahr- und Preisplanung. Wir stellen zwei mathematische Optimierungsmodelle zur Linien- und Preisplanung vor. Wir zeigen anhand von Berechnungen für die Verkehrsbetriebe in Potsdam(ViP), dass sich damit komplexe Zusammenhänge quantitativ analysieren lassen. Auf diese Weise untersuchen wir die Auswirkungen von Freiheitsgraden auf die Konstruktion von Linien und die Wahl von Reisewegen der Passagiere, Abhängigkeiten zwischen Kosten und Reisezeiten sowie den Einfluss verschiedener Preissysteme auf Nachfrage und Kostendeckung. T3 - ZIB-Report - 08-04 KW - Preisplanung KW - Linienplanung KW - Optimierung Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10555 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Nonlinear pseudo-Boolean optimization: relaxation or propagation? N2 - Pseudo-Boolean problems lie on the border between satisfiability problems, constraint programming, and integer programming. In particular, nonlinear constraints in pseudo-Boolean optimization can be handled by methods arising in these different fields: One can either linearize them and work on a linear programming relaxation or one can treat them directly by propagation. In this paper, we investigate the individual strengths of these approaches and compare their computational performance. Furthermore, we integrate these techniques into a branch-and-cut-and-propagate framework, resulting in an efficient nonlinear pseudo-Boolean solver. T3 - ZIB-Report - 09-11 KW - Pseudo-Boolean KW - constraint integer programming KW - linear relaxation KW - separation algorithm KW - domain propagation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11232 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - The Line Connectivity Problem N2 - This paper introduces the "line connectivity problem", a generalization of the Steiner tree problem and a special case of the line planning problem. We study its complexity and give an IP formulation in terms of an exponential number of constraints associated with "line cut constraints". These inequalities can be separated in polynomial time. We also generalize the Steiner partition inequalities. T3 - ZIB-Report - 08-31 KW - Steiner Tree Generalization Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10820 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Pfetsch, Marc T1 - Detecting Orbitopal Symmetries N2 - Orbitopes can be used to handle symmetries which arise in integer programming formulations with an inherent assignment structure. We investigate the detection of symmetries appearing in this approach. We show that detecting so-called orbitopal symmetries is graph-isomorphism hard in general, but can be performed in linear time if the assignment structure is known. T3 - ZIB-Report - 08-33 KW - Symmetrie-Erkennung KW - Orbitope KW - Ganzzahlige Programmierung KW - Symmetrie-Brechung KW - Graphenisomorphie KW - symmetry detection KW - orbitopes KW - integer programming KW - symmetry breaking KW - graph ismorphism Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10842 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System N2 - Line planning is an important step in the strategic planning process of a public transportation system. In this paper, we discuss an optimization model for this problem in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the problem for path and tree network topologies as well as several categories of line operation that are important for the Quito Trolebus system. It turns out that, from a computational complexity worst case point of view, the problem is hard in all but the most simple variants. In practice, however, instances based on real data from the Trolebus System in Quito can be solved quite well, and significant optimization potentials can be demonstrated. T3 - ZIB-Report - 08-35 KW - line planning KW - computational complexity KW - public transport KW - integer programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10869 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - On the Line Planning Problem in Tree Networks N2 - We introduce an optimization model for the line planning problem in a public transportation system that aims at minimizing operational costs while ensuring a given level of quality of service in terms of available transport capacity. We discuss the computational complexity of the model for tree network topologies and line structures that arise in a real-world application at the Trolebus Integrated System in Quito. Computational results for this system are reported. T3 - ZIB-Report - 08-52 KW - line planning KW - computational complexity KW - public transport optimization Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11069 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System (Extended Abstract) N2 - Line planning is an important step in the strategic planning process of a public transportation system. In this paper, we discuss an optimization model for this problem in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the problem for path and tree network topologies as well as several categories of line operation that are important for the Quito Trolebus system. It turns out that, from a computational complexity worst case point of view, the problem is hard in all but the most simple variants. In practice, however, instances based on real data from the Trolebus System in Quito can be solved quite well, and significant optimization potentials can be demonstrated. T3 - ZIB-Report - 08-53 KW - line planning KW - computational complexity KW - public transport KW - integer programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11076 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Solving Pseudo-Boolean Problems with SCIP N2 - Pseudo-Boolean problems generalize SAT problems by allowing linear constraints and a linear objective function. Different solvers, mainly having their roots in the SAT domain, have been proposed and compared,for instance, in Pseudo-Boolean evaluations. One can also formulate Pseudo-Boolean models as integer programming models. That is,Pseudo-Boolean problems lie on the border between the SAT domain and the integer programming field. In this paper, we approach Pseudo-Boolean problems from the integer programming side. We introduce the framework SCIP that implements constraint integer programming techniques. It integrates methods from constraint programming, integer programming, and SAT-solving: the solution of linear programming relaxations, propagation of linear as well as nonlinear constraints, and conflict analysis. We argue that this approach is suitable for Pseudo-Boolean instances containing general linear constraints, while it is less efficient for pure SAT problems. We present extensive computational experiments on the test set used for the Pseudo-Boolean evaluation 2007. We show that our approach is very efficient for optimization instances and competitive for feasibility problems. For the nonlinear parts, we also investigate the influence of linear programming relaxations and propagation methods on the performance. It turns out that both techniques are helpful for obtaining an efficient solution method. T3 - ZIB-Report - 08-12 KW - Pseudo-Boolean KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Pseudo-Boolean KW - constraint integer programming KW - integer programming KW - branch-and-cut KW - optimization software Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10671 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Models for Fare Planning in Public Transport N2 - The optimization of fare systems in public transit allows to pursue objectives such as the maximization of demand, revenue, profit, or social welfare. We propose a non-linear optimization approach to fare planning that is based on a detailed discrete choice model of user behavior. The approach allows to analyze different fare structures, optimization objectives, and operational scenarios involving, e.g., subsidies. We use the resulting models to compute optimized fare systems for the city of Potsdam, Germany. T3 - ZIB-Report - 08-16 KW - Preisplanung KW - Nachfragefunktion KW - Optimierung KW - Nahverkehr Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10708 SN - 1438-0064 ER - TY - GEN A1 - Harks, Tobias A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Competitive Online Multicommodity Routing N2 - We study online multicommodity minimum cost routing problems in networks, where commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining the routing weights. We discuss an online algorithm that routes each commodity by minimizing a convex cost function that depends on the demands that are previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is $4K/2+K$-competitive, where $K$ is the number of commodities. For the parallel arc case this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably. T3 - ZIB-Report - 06-27 KW - Online Optimization KW - Routing KW - Telecommunications Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9212 ER - TY - GEN A1 - Harks, Tobias A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Competitive Online Multicommodity Routing N2 - In this paper we study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that only depends on the demands previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is 4K2 (1+K)2 -competitive, where K is the number of commodities. For the single-source single-destination case, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably. T3 - ZIB-Report - 07-16 KW - Online Optimization KW - Routing KW - Telecommunications Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9599 ER - TY - GEN A1 - Kaibel, Volker A1 - Peinhardt, Matthias A1 - Pfetsch, Marc T1 - Orbitopal Fixing N2 - The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up the branch-and-cut tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving this kind of symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the branch-and-cut tree, removes redundant parts of the tree produced by the above mentioned permutations. The method relies on certain polyhedra, called orbitopes, which have been investigated in (Kaibel and Pfetsch (2006)). However, it does not add inequalities to the model, and thus, it does not increase the difficulty of solving the linear programming relaxations. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem motivated from frequency planning in mobile telecommunication networks. T3 - ZIB-Report - 06-48 KW - symmetry breaking KW - variable fixing KW - orbitopes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9422 ER - TY - GEN A1 - Jokar, Sadegh A1 - Pfetsch, Marc T1 - Exact and Approximate Sparse Solutions of Underdetermined Linear Equations N2 - In this paper, we empirically investigate the NP-hard problem of finding sparse solutions to linear equation systems, i.e., solutions with as few nonzeros as possible. This problem has received considerable interest in the sparse approximation and signal processing literature, recently. We use a branch-and-cut approach via the maximum feasible subsystem problem to compute optimal solutions for small instances and investigate the uniqueness of the optimal solutions. We furthermore discuss five (modifications of) heuristics for this problem that appear in different parts of the literature. For small instances, the exact optimal solutions allow us to evaluate the quality of the heuristics, while for larger instances we compare their relative performance. One outcome is that the basis pursuit heuristic performs worse, compared to the other methods. Among the best heuristics are a method due to Mangasarian and a bilinear approach. T3 - ZIB-Report - 07-05 KW - sparse representations KW - basis pursuit KW - orthogonal matching pursuit KW - maximum feasible subsystem problem Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9488 ER - TY - GEN A1 - Kaibel, Volker A1 - Pfetsch, Marc T1 - Packing and Partitioning Orbitopes N2 - We introduce orbitopes as the convex hulls of 0/1-matrices that are lexicographically maximal subject to a group acting on the columns. Special cases are packing and partitioning orbitopes, which arise from restrictions to matrices with at most or exactly one 1-entry in each row, respectively. The goal of investigating these polytopes is to gain insight into ways of breaking certain symmetries in integer programs by adding constraints, e.g., for a well-known formulation of the graph coloring problem. We provide a thorough polyhedral investigation of packing and partitioning orbitopes for the cases in which the group acting on the columns is the cyclic group or the symmetric group. Our main results are complete linear inequality descriptions of these polytopes by facet-defining inequalities. For the cyclic group case, the descriptions turn out to be totally unimodular, while for the symmetric group case, both the description and the proof are more involved. The associated separation problems can be solved in linear time. T3 - ZIB-Report - 06-17 KW - integer programming KW - symmetry breaking KW - lexicographic representatives Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9104 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Optimal Fares for Public Transport N2 - The \emph{fare planning problem} for public transport is to design a system of fares that maximize the revenue. We introduce a nonlinear optimization model to approach this problem. It is based on a d iscrete choice logit model that expresses demand as a function of the fares. We illustrate our approach by computing and comparing two different fare systems for the intercity network of the Netherlands. T3 - ZIB-Report - 05-35 KW - fare planning KW - demand function KW - discrete choice model Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8698 ER - TY - GEN A1 - Pfetsch, Marc A1 - Borndörfer, Ralf T1 - Routing in Line Planning for Public Transportation N2 - The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a network such that a giv en demand can be satisfied. There are two objectives. Passengers want to minimize travel times, the transport company wishes to minimize operating costs. We investigate three variants of a multi-commo dity flow model for line planning that differ with respect to passenger routings. The first model allows arbitrary routings, the second only unsplittable routings, and the third only shortest path rou tings with respect to the network. We compare these models theoretically and computationally on data for the city of Potsdam. T3 - ZIB-Report - 05-36 KW - line planning KW - column generation KW - passenger routing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8706 ER - TY - GEN A1 - Harks, Tobias A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vredeveld, Tjark T1 - Online Multicommodity Routing with Time Windows N2 - We consider a multicommodity routing problem, where demands are released \emph{online} and have to be routed in a network during specified time windows. The objective is to minimize a time and load dependent convex cost function of the aggregate arc flow. First, we study the fractional routing variant. We present two online algorithms, called Seq and Seq$^2$. Our first main result states that, for cost functions defined by polynomial price functions with nonnegative coefficients and maximum degree~$d$, the competitive ratio of Seq and Seq$^2$ is at most $(d+1)^{d+1}$, which is tight. We also present lower bounds of $(0.265\,(d+1))^{d+1}$ for any online algorithm. In the case of a network with two nodes and parallel arcs, we prove a lower bound of $(2-\frac{1}{2} \sqrt{3})$ on the competitive ratio for Seq and Seq$^2$, even for affine linear price functions. Furthermore, we study resource augmentation, where the online algorithm has to route less demand than the offline adversary. Second, we consider unsplittable routings. For this setting, we present two online algorithms, called U-Seq and U-Seq$^2$. We prove that for polynomial price functions with nonnegative coefficients and maximum degree~$d$, the competitive ratio of U-Seq and U-Seq$^2$ is bounded by $O{1.77^d\,d^{d+1}}$. We present lower bounds of $(0.5307\,(d+1))^{d+1}$ for any online algorithm and $(d+1)^{d+1}$ for our algorithms. Third, we consider a special case of our framework: online load balancing in the $\ell_p$-norm. For the fractional and unsplittable variant of this problem, we show that our online algorithms are $p$ and $O{p}$ competitive, respectively. Such results where previously known only for scheduling jobs on restricted (un)related parallel machines. T3 - ZIB-Report - 07-22 KW - Online Optimization KW - Routing KW - Telecommunications Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9654 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. T3 - ZIB-Report - 11-21 KW - Large Neighborhood Search KW - Primal Heuristic KW - MIP KW - MIQCP KW - Pseudo-Boolean Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12989 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc T1 - A Column-Generation Approach to Line Planning in Public Transport JF - Transportation Science (INFORMS) Y1 - 2007 U6 - https://doi.org/10.1287/trsc.1060.0161 VL - 41 IS - 1 SP - 123 EP - 132 ER - TY - GEN A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Pfetsch, Marc ED - Jünger, Michael ED - Reinelt, Gerhard T1 - Progress in Academic Computational Integer Programming T2 - Facets of Combinatorial Optimization Y1 - 2013 U6 - https://doi.org/10.1007/978-3-642-38189-8_19 SP - 483 EP - 506 PB - Springer ER - TY - BOOK A1 - Koch, Thorsten A1 - Hiller, Benjamin A1 - Pfetsch, Marc A1 - Schewe, Lars T1 - Evaluating Gas Network Capacities Y1 - 2015 SN - 978-1-611973-68-6 PB - SIAM ER - TY - JOUR A1 - Humpola, Jesco A1 - Joormann, Imke A1 - Oucherif, Djamal A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schwarz, Robert T1 - GasLib - A Library of Gas Network Instances JF - Optimization Online N2 - The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57950 ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP T2 - Proceedings of the 9th Metaheuristics International Conference (MIC 2011) N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. Y1 - 2011 SN - 978-88-900984-3-7 SP - 51 EP - 60 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Pfetsch, Marc T1 - The Steiner connectivity problem JF - Mathematical Programming A Y1 - 2013 U6 - https://doi.org/10.1007/s10107-012-0564-5 VL - 142 IS - 1 SP - 133 EP - 167 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Pfetsch, Marc T1 - Models for Fare Planning in Public Transport JF - Discrete Applied Mathematics Y1 - 2012 U6 - https://doi.org/10.1016/j.dam.2012.02.027 VL - 160 IS - 18 SP - 2591 EP - 2605 ER - TY - JOUR A1 - Schmidt, Martin A1 - Assmann, Denis A1 - Burlacu, Robert A1 - Humpola, Jesco A1 - Joormann, Imke A1 - Kanelakis, Nikolaos A1 - Koch, Thorsten A1 - Oucherif, Djamal A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Sirvent, Matthias T1 - GasLib – A Library of Gas Network Instances JF - Data Y1 - 2017 U6 - https://doi.org/10.3390/data2040040 VL - 2 IS - 4 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc ED - Haasis, Hans-Dietrich ED - Kopfer, Herbert ED - Schönberger, Jörn T1 - Optimal Fares for Public Transport T2 - Operations Research Proceedings 2005 Y1 - 2006 UR - {http://opus.kobv.de/zib/volltexte/2005/869/} SP - 29 EP - 36 PB - Springer-Verlag ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc ED - Barnhart, Cynthia ED - Clausen, Uwe ED - Lauther, Ulrich ED - Möhring, Rolf T1 - Line Planning and Connectivity T2 - Models and Algorithms for Optimization in Logistics Y1 - 2009 IS - 09261 PB - Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany CY - Dagstuhl, Germany ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc ED - Hickman, Mark ED - Mirchandani, Pitu ED - Voß, Stefan T1 - Models for Line Planning in Public Transport T2 - Computer-aided Systems in Public Transport (CASPT 2004) Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-73312-6_18 VL - 600 SP - 363 EP - 378 PB - Springer-Verlag ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Angebotsplanung im öffentlichen Nahverkehr T2 - HEUREKA’08 Y1 - 2008 UR - http://opus.kobv.de/zib/volltexte/2008/1084/ PB - FGSV Verlag ER - TY - CHAP A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc ED - Fischetti, Matteo ED - Widmayer, Peter T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System T2 - ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems Y1 - 2008 UR - http://drops.dagstuhl.de/opus/volltexte/2008/1580 PB - Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany CY - Dagstuhl, Germany ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc ED - Fleischmann, Bernhard ED - Borgwardt, Karl ED - Klein, Robert ED - Tuma, Axel T1 - The Line Connectivity Problem T2 - Operations Research Proceedings 2008 Y1 - 2009 UR - http://opus.kobv.de/zib/volltexte/2008/1117/ SP - 557 EP - 562 PB - Springer-Verlag ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Pfetsch, Marc T1 - Public transport to the fORe JF - OR/MS Today Y1 - 2006 UR - http://www.lionhrtpub.com/orms/orms-4-06/frtransport.html SP - 30 EP - 40 ER - TY - CHAP A1 - Pfetsch, Marc A1 - Borndörfer, Ralf ED - Haasis, Hans-Dietrich T1 - Routing in Line Planning for Public Transportation T2 - Operations Research Proceedings 2005 Y1 - 2006 UR - http://opus.kobv.de/zib/volltexte/2005/870/ SP - 405 EP - 410 PB - Springer-Verlag ER - TY - CHAP A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc ED - Kullmann, Oliver T1 - Nonlinear pseudo-Boolean optimization T2 - Theory and Applications of Satisfiability Testing – SAT 2009 Y1 - 2009 VL - 5584 SP - 441 EP - 446 PB - Springer ER - TY - CHAP A1 - Berthold, Timo A1 - Pfetsch, Marc ED - Fleischmann, Bernhard ED - Borgwardt, Karl ED - Klein, Robert ED - Tuma, Axel T1 - Detecting Orbitopal Symmetries T2 - Operations Research Proceedings 2008 Y1 - 2009 SP - 433 EP - 438 PB - Springer-Verlag ER - TY - CHAP A1 - Koch, Thorsten A1 - Pfetsch, Marc A1 - Rövekamp, Jessica T1 - Introduction T2 - Evaluating Gas Network Capacities Y1 - 2015 SN - 9781611973686 SP - 3 EP - 16 PB - Society for Industrial and Applied Mathematics ER - TY - CHAP A1 - Bargmann, Dagmar A1 - Ebbers, Mirko A1 - Heinecke, Nina A1 - Koch, Thorsten A1 - Kühl, Veronika A1 - Pelzer, Antje A1 - Pfetsch, Marc A1 - Rövekamp, Jessica A1 - Spreckelsen, Klaus T1 - State-of-the-art in evaluating gas network capacities T2 - Evaluating Gas Network Capacities Y1 - 2015 SN - 9781611973686 SP - 65 EP - 84 PB - Society for Industrial and Applied Mathematics ER - TY - CHAP A1 - Schewe, Lars A1 - Koch, Thorsten A1 - Martin, Alexander A1 - Pfetsch, Marc T1 - Mathematical optimization for evaluating gas network capacities T2 - Evaluating Gas Network Capacities Y1 - 2015 SN - 9781611973686 SP - 87 EP - 102 PB - Society for Industrial and Applied Mathematics ER - TY - CHAP A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Lehmann, Thomas A1 - Lenz, Ralf A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Willert, Bernhard T1 - Computational results for validation of nominations T2 - Evaluating Gas Network Capacities N2 - The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - GEN A1 - Hendel, Gregor A1 - Anderson, Daniel A1 - Le Bodic, Pierre A1 - Pfetsch, Marc T1 - Estimating the Size of Branch-And-Bound Trees N2 - This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP. T3 - ZIB-Report - 20-02 KW - mixed integer programming KW - machine learning KW - branch and bound KW - forecasting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78144 SN - 1438-0064 ER - TY - CHAP A1 - Pfetsch, Marc A1 - Pokutta, Sebastian T1 - IPBoost – Non-Convex Boosting via Integer Programming T2 - Proceedings of ICML Y1 - 2020 N1 - URL of the Code: https://www2.mathematik.tu-darmstadt.de/~pfetsch/ipboost.html N1 - URL of the Slides: https://app.box.com/s/8dpvmls88suouy11bkpwufhu7iiz6dxl N1 - URL of the Abstract: http://www.pokutta.com/blog/research/2020/02/13/ipboost-abstract.html ER - TY - JOUR A1 - Le Bodic, P. A1 - Pfetsch, Marc A1 - Pavelka, J. A1 - Pokutta, Sebastian T1 - Solving MIPs via Scaling-based Augmentation JF - Discrete Optimization Y1 - 2018 N1 - Additional Note: doi: 10.1016/j.disopt.2017.08.004 N1 - URL of the PDF: http://dx.doi.org/10.1016/j.disopt.2017.08.004 VL - 27 SP - 1 EP - 25 ER - TY - JOUR A1 - Koch, Thorsten A1 - Schmidt, Martin A1 - Hiller, Benjamin A1 - Pfetsch, Marc A1 - Geißler, Björn A1 - Henrion, René A1 - Joormann, Imke A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Schewe, Lars A1 - Schultz, Rüdiger T1 - Capacity Evaluation for Large-Scale Gas Networks JF - German Success Stories in Industrial Mathematics Y1 - 2020 SN - 978-3-030-81454-0 U6 - https://doi.org/10.1007/978-3-030-81455-7 VL - 35 SP - 23 EP - 28 ER - TY - JOUR A1 - Hendel, Gregor A1 - Anderson, Daniel A1 - Le Bodic, Pierre A1 - Pfetsch, Marc T1 - Estimating the Size of Branch-And-Bound Trees JF - INFORMS Journal on Computing N2 - This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP. Y1 - 2021 U6 - https://doi.org/10.1287/ijoc.2021.1103 ER - TY - GEN A1 - Maher, Stephen J. A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 4.0 N2 - The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences. T3 - ZIB-Report - 17-12 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62170 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Winkler, Michael A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 3.2 N2 - The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. T3 - ZIB-Report - 15-60 KW - mixed-integer linear and nonlinear programming KW - MIP solver KW - MINLP solver KW - linear programming KW - LP solver KW - simplex method KW - modeling KW - parallel branch-and-bound KW - branch-cut-and-price framework KW - generic column generation KW - Steiner tree solver KW - multi-criteria optimization KW - mixed-integer semidefinite programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57675 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Besançon, Mathieu A1 - Chen, Wei-Kun A1 - Chmiela, Antonia A1 - Donkiewicz, Tim A1 - van Doornmalen, Jasper A1 - Eifler, Leon A1 - Gaul, Oliver A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - van der Hulst, Rolf A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc E. A1 - Rehfeldt, Daniel A1 - Schlein, Steffan A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Sofranac, Boro A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Wellner, Philipp A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 8.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack. T3 - ZIB-Report - 21-41 KW - Constraint integer programming KW - Linear programming KW - Mixed-integer linear programming KW - Mixed-integer nonlinear programming KW - Optimization solver KW - Branch-and-cut KW - Branch-and-price KW - Column generation KW - Parallelization KW - Mixed-integer semidefinite programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85309 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Bastubbe, Michael A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Schubert, Christoph A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Walter, Matthias A1 - Wegscheider, Fabian A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 6.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 18-26 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69361 SN - 1438-0064 ER - TY - JOUR A1 - Bestuzheva, Ksenia A1 - Besançon, Mathieu A1 - Chen, Wei-Kun A1 - Chmiela, Antonia A1 - Donkiewicz, Tim A1 - Doornmalen, Jasper A1 - Eifler, Leon A1 - Gaul, Oliver A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - Hulst, Rolf A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Rehfeldt, Daniel A1 - Schlein, Steffan A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Sofranac, Boro A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Wellner, Philipp A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - Enabling research through the SCIP optimization suite 8.0 JF - ACM Transactions on Mathematical Software N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP’s main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP’s application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP. Y1 - 2023 U6 - https://doi.org/10.1145/3585516 VL - 49 IS - 2 SP - 1 EP - 21 ER - TY - CHAP A1 - Thuerck, Daniel A1 - Sofranac, Boro A1 - Pfetsch, Marc A1 - Pokutta, Sebastian T1 - Learning cuts via enumeration oracles T2 - Proceedings of Conference on Neural Information Processing Systems Y1 - 2023 ER - TY - GEN A1 - Bolusani, Suresh A1 - Besançon, Mathieu A1 - Bestuzheva, Ksenia A1 - Chmiela, Antonia A1 - Dionísio, João A1 - Donkiewicz, Tim A1 - van Doornmalen, Jasper A1 - Eifler, Leon A1 - Ghannam, Mohammed A1 - Gleixner, Ambros A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hedtke, Ivo A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - van der Hulst, Rolf A1 - Kamp, Dominik A1 - Koch, Thorsten A1 - Kofler, Kevin A1 - Lentz, Jurgen A1 - Manns, Julian A1 - Mexi, Gioni A1 - Mühmer, Erik A1 - E. Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Xu, Liding T1 - The SCIP Optimization Suite 9.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver. T3 - ZIB-Report - 24-02-29 KW - Constraint integer programming KW - Linear programming KW - Mixed-integer linear programming KW - Mixed-integer nonlinear programming KW - Optimization solver KW - Branch-and-cut KW - Branch-and-price KW - Column generation KW - Parallelization KW - Mixed-integer semidefinite programming Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-95528 SN - 1438-0064 ER -