TY - GEN A1 - Koltai, Peter A1 - Ciccotti, Giovanni A1 - Schütte, Christof T1 - On metastability and Markov state models for non-stationary molecular dynamics BT - 2016 Editor's Choice of The Journal of Chemical Physics T2 - The Journal of Chemical Physics N2 - We utilize the theory of coherent sets to build Markov state models for non- equilibrium molecular dynamical systems. Unlike for systems in equilibrium, “meta- stable” sets in the non-equilibrium case may move as time evolves. We formalize this concept by relying on the theory of coherent sets, based on this we derive finite-time non-stationary Markov state models, and illustrate the concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples. T3 - ZIB-Report - 16-11 KW - coherent set, KW - Markov state model KW - non-equilibrium molecular dynamics KW - metastability Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57869 SN - 1438-0064 VL - 174103 ET - 145 ER - TY - JOUR A1 - Koltai, Peter A1 - Ciccotti, Giovanni A1 - Schütte, Christof T1 - On Markov state models for non-equilibrium molecular dynamics JF - The Journal of Chemical Physics Y1 - 2016 U6 - https://doi.org/10.1063/1.4966157 N1 - 2016 Editor's Choice of The Journal of Chemical Physics VL - 145 IS - 174103 ER - TY - JOUR A1 - Klus, Stefan A1 - Koltai, Peter A1 - Schütte, Christof T1 - On the numerical approximation of the Perron-Frobenius and Koopman operator JF - Journal of Computational Dynamics N2 - Information about the behavior of dynamical systems can often be obtained by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with a dynamical system. Examples of such operators are the Perron-Frobenius and the Koopman operator. In this paper, we will review di� fferent methods that have been developed over the last decades to compute � infinite-dimensional approximations of these in� finite-dimensional operators - in particular Ulam's method and Extended Dynamic Mode Decomposition (EDMD) - and highlight the similarities and di� fferences between these approaches. The results will be illustrated using simple stochastic di� fferential equations and molecular dynamics examples. Y1 - 2016 U6 - https://doi.org/10.3934/jcd.2016003 VL - 3 IS - 1 SP - 51 EP - 77 ER -