TY - GEN A1 - Petkovic, Milena A1 - Zakiyeva, Nazgul A1 - Zittel, Janina T1 - Statistical analysis and modeling for detecting regime changes in gas nomination time series N2 - As a result of the legislation for gas markets introduced by the European Union in 2005, separate independent companies have to conduct the transport and trading of natural gas. The current gas market of Germany, which has a market value of more than 54 billion USD, consists of Transmission System Operators (TSO), network users, and traders. Traders can nominate a certain amount of gas anytime and anywhere in the network. Such unrestricted access for the traders, on the other hand, increase the uncertainty in the gas supply management. Some customers’ behaviors may cause abrupt structural changes in gas flow time series. In particular, it is a challenging task for the TSO operators to predict gas nominations 6 to 10 hours ahead. In our study, we aim to investigate the regime changes in the time series of nominations to predict the 6 to 10 hours ahead of gas nominations. T3 - ZIB-Report - 21-22 KW - Time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82988 SN - 1438-0064 ER - TY - GEN A1 - Petkovic, Milena A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks N2 - Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21$\%$. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. T3 - ZIB-Report - 21-01 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81221 SN - 1438-0064 ER - TY - GEN A1 - Petkovic, Milena A1 - Chen, Ying A1 - Gamrath, Inken A1 - Gotzes, Uwe A1 - Hadjidimitriou, Natalia Selini A1 - Zittel, Janina A1 - Xu, Xiaofei A1 - Koch, Thorsten T1 - A Hybrid Approach for High Precision Prediction of Gas Flows N2 - About 20% of the German energy demand is supplied by natural gas. Ad- ditionally, for about twice the amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by so-called transmissions system operators or TSOs. The number one priority of the TSOs is to ensure security of supply. However, the TSOs have no knowledge of the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high- pressure transport network of about 12.000 km length. Since flexibility and security of supply is of utmost importance to the German Energy Transition (“Energiewende”) especially with the introduction of peak-load gas power stations, being able to predict in- and out-flow of the network is of great importance. In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary nodes of a transport network. The new method employs optimized feature minimization and selection. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve robust high quality forecasts on real world data for different types of network nodes. Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation T3 - ZIB-Report - 19-26 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73525 SN - 1438-0064 ER -