TY - JOUR A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Markov Control with Rare State Observation JF - International Journal of Biomathematics and Biostatistics Y1 - 2012 UR - http://publications.mi.fu-berlin.de/1177/ ER - TY - JOUR A1 - Duwal, Sulav A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Optimal Treatment Strategies in the Context of 'Treatment for Prevention' against HIV/1 in Resource-Poor Settings JF - PloS Computational Biology N2 - An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment-for-prevention’ may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initiation rapidly decreases virus burden, which reduces the number of transmittable viruses and thereby the probability of infection. However, HIV inevitably develops drug resistance, which leads to virus rebound and nullifies the effect of `treatment-for-prevention’ for the time it remains unrecognized. While timely conducted treatment changes may avert periods of viral rebound, necessary treatment options and diagnostics may be lacking in resource-constrained settings. Within this work, we provide a mathematical platform for comparing different treatment paradigms that can be applied to many medical phenomena. We use this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertainment. Both strategies are compared to current clinical protocols (standard of care and the HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 onward transmission exemplarily for South Africa. All therapeutic strategies are assessed using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for solving the respective optimal control problems are provided. Our mathematical model suggests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and no treatment in terms of economic means, life prolongation and reduction of HIV-transmission. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar to the optimal pro-active strategy. Our results suggest that ‘treatment-for-prevention’ may be further improved using either of the two analyzed treatment paradigms. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pcbi.1004200 VL - 11 IS - 4 ER - TY - JOUR A1 - Gupta, Pooja A1 - Gramatke, Annika A1 - Einspanier, Ralf A1 - Schütte, Christof A1 - von Kleist, Max A1 - Sharbati, Jutta T1 - In silico cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements JF - Toxicology in Vitro N2 - Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are essential. xCELLigence’s real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50% inhibitory concentration IC50 on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10 chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 μM for the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the tested cell line, in agreement with literature knowledge. IC50 values of all apparent in vivo non-toxic compounds were estimated to be non-toxic by our method. Corresponding estimates from RTCA’s in-built model gave false positive (toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master. KW - Real-time cell analyzer KW - Toxicity KW - Mathematical modeling Y1 - 2017 SN - 1438-0064 VL - 41 SP - 179 EP - 188 ER - TY - JOUR A1 - von Kleist, Max A1 - Schütte, Christof A1 - Zhang, Wei T1 - Statistical analysis of the first passage path ensemble of jump processes JF - Journal of Statistical Physics N2 - The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas. Y1 - 2018 U6 - https://doi.org/10.1007/s10955-017-1949-x VL - 170 SP - 809 EP - 843 ER - TY - GEN A1 - Gupta, Pooja A1 - Gramatke, Annika A1 - Einspanier, Ralf A1 - Schütte, Christof A1 - von Kleist, Max A1 - Sharbati, Jutta T1 - In silicio cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements N2 - Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are essential. xCELLigence’s real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50% inhibitory concentration IC_{50} on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10 chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 μM for the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the tested cell line, in agreement with literature knowledge. IC_{50} values of all apparent in vivo non-toxic compounds were estimated to be non-toxic by our method. Corresponding estimates from RTCA’s in-built model gave false positive (toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master. T3 - ZIB-Report - 17-08 KW - Real-time cell analyzer KW - Toxicity KW - Mathematical modeling KW - IC_{50} Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62666 SN - 1438-0064 ER - TY - GEN A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Markov Control Processes with Rare State Observation: Theory and Application to Treatment Scheduling in HIV-1 N2 - Markov Decision Processes (MDP) or Partially Observable MDPs (POMDP) are used for modelling situations in which the evolution of a process is partly random and partly controllable. These MDP theories allow for computing the optimal control policy for processes that can continuously or frequently be observed, even if only partially. However, they cannot be applied if state observation is very costly and therefore rare (in time). We present a novel MDP theory for rare, costly observations and derive the corresponding Bellman equation. In the new theory, state information can be derived for a particular cost after certain, rather long time intervals. The resulting information costs enter into the total cost and thus into the optimization criterion. This approach applies to many real world problems, particularly in the medical context, where the medical condition is examined rather rarely because examination costs are high. At the same time, the approach allows for efficient numerical realization. We demonstrate the usefulness of the novel theory by determining, from the national economic perspective, optimal therapeutic policies for the treatment of the human immunodefficiency virus (HIV) in resource-rich and resource-poor settings. Based on the developed theory and models, we discover that available drugs may not be utilized efficiently in resource-poor settings due to exorbitant diagnostic costs. T3 - ZIB-Report - 13-34 KW - information costs KW - hidden state KW - bellmann equation KW - optimal therapeutic policies KW - diagnostic frequency KW - resource-poor KW - resource-rich Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41955 SN - 1438-0064 ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Markov Control Processes with Rare State Observation: Sensitivity Analysis with Respect to Optimal Treatment Strategies against HIV-1 JF - International Journal of Biomathematics and Biostatistics N2 - We present the theory of “Markov decision processes (MDP) with rare state observation” and apply it to optimal treatment scheduling and diagnostic testing to mitigate HIV-1 drug resistance development in resource-poor countries. The developed theory assumes that the state of the process is hidden and can only be determined by making an examination. Each examination produces costs which enter into the considered cost functional so that the resulting optimization problem includes finding optimal examination times. This is a realistic ansatz: In many real world applications, like HIV-1 treatment scheduling, the information about the disease evolution involves substantial costs, such that examination and control are intimately connected. However, a perfect compliance with the optimal strategy can rarely be achieved. This may be particularly true for HIV-1 resistance testing in resource-constrained countries. In the present work, we therefore analyze the sensitivity of the costs with respect to deviations from the optimal examination times both analytically and for the considered application. We discover continuity in the cost-functional with respect to the examination times. For the HIV-application, moreover, sensitivity towards small deviations from the optimal examination rule depends on the disease state. Furthermore, we compare the optimal rare-control strategy to (i) constant control strategies (one action for the remaining time) and to (ii) the permanent control of the original, fully observed MDP. This comparison is done in terms of expected costs and in terms of life-prolongation. The proposed rare-control strategy offers a clear benefit over a constant control, stressing the usefulness of medical testing and informed decision making. This indicates that lower-priced medical tests could improve HIV treatment in resource-constrained settings and warrants further investigation. Y1 - 2013 VL - 2 IS - 1 ER - TY - JOUR A1 - Wang, Han A1 - Schütte, Christof A1 - Ciccotti, Giovanni A1 - von Kleist, Max T1 - Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation JF - Journal of Chemical Theory and Computation N2 - In this paper, we investigate the conformational dynamics of alanine dipeptide under an external electric field by nonequilibrium molecular dynamics simulation. We consider the case of a constant and of an oscillatory field. In this context, we propose a procedure to implement the temperature control, which removes the irrelevant thermal effects of the field. For the constant field different time-scales are identified in the conformational, dipole moment, and orientational dynamics. Moreover, we prove that the solvent structure only marginally changes when the external field is switched on. In the case of oscillatory field, the conformational changes are shown to be as strong as in the previous case, and nontrivial nonequilibrium circular paths in the conformation space are revealed by calculating the integrated net probability fluxes. Y1 - 2014 U6 - https://doi.org/10.1021/ct400993e VL - 10 IS - 4 SP - 1376 EP - 1386 ER - TY - JOUR A1 - Winkelmann, Stefanie A1 - Schütte, Christof A1 - von Kleist, Max T1 - Markov Control Processes with Rare State Observation: Theory and Application to Treatment Scheduling in HIV-1 JF - Communications in Mathematical Sciences N2 - Markov Decision Processes (MDP) or Partially Observable MDPs (POMDP) are used for modelling situations in which the evolution of a process is partly random and partly controllable. These MDP theories allow for computing the optimal control policy for processes that can continuously or frequently be observed, even if only partially. However, they cannot be applied if state observation is very costly and therefore rare (in time). We present a novel MDP theory for rare, costly observations and derive the corresponding Bellman equation. In the new theory, state information can be derived for a particular cost after certain, rather long time intervals. The resulting information costs enter into the total cost and thus into the optimization criterion. This approach applies to many real world problems, particularly in the medical context, where the medical condition is examined rather rarely because examination costs are high. At the same time, the approach allows for efficient numerical realization. We demonstrate the usefulness of the novel theory by determining, from the national economic perspective, optimal therapeutic policies for the treatment of the human immunodeficiency virus (HIV) in resource-rich and resource-poor settings. Based on the developed theory and models, we discover that available drugs may not be utilized efficiently in resource-poor settings due to exorbitant diagnostic costs. Y1 - 2014 U6 - https://doi.org/10.4310/CMS.2014.v12.n5.a4 VL - 12 IS - 5 SP - 859 EP - 877 ER - TY - JOUR A1 - Haase, Tobias A1 - Sunkara, Vikram A1 - Kohl, Benjamin A1 - Meier, Carola A1 - Bußmann, Patricia A1 - Becker, Jessica A1 - Jagielski, Michal A1 - von Kleist, Max A1 - Ertel, Wolfgang T1 - Discerning the spatio-temporal disease patterns of surgically induced OA mouse models JF - PLOS One N2 - Osteoarthritis (OA) is the most common cause of disability in ageing societies, with no effective therapies available to date. Two preclinical models are widely used to validate novel OA interventions (MCL-MM and DMM). Our aim is to discern disease dynamics in these models to provide a clear timeline in which various pathological changes occur. OA was surgically induced in mice by destabilisation of the medial meniscus. Analysis of OA progression revealed that the intensity and duration of chondrocyte loss and cartilage lesion formation were significantly different in MCL-MM vs DMM. Firstly, apoptosis was seen prior to week two and was narrowly restricted to the weight bearing area. Four weeks post injury the magnitude of apoptosis led to a 40–60% reduction of chondrocytes in the non-calcified zone. Secondly, the progression of cell loss preceded the structural changes of the cartilage spatio-temporally. Lastly, while proteoglycan loss was similar in both models, collagen type II degradation only occurred more prominently in MCL-MM. Dynamics of chondrocyte loss and lesion formation in preclinical models has important implications for validating new therapeutic strategies. Our work could be helpful in assessing the feasibility and expected response of the DMM- and the MCL-MM models to chondrocyte mediated therapies. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0213734 VL - 14 IS - 4 PB - PLOS One ER -