TY - CHAP A1 - Seim, Heiko A1 - Kainmüller, Dagmar A1 - Lamecker, Hans A1 - Bindernagel, Matthias A1 - Malinowski, Jana A1 - Zachow, Stefan ED - v. Ginneken, B. T1 - Model-based Auto-Segmentation of Knee Bones and Cartilage in MRI Data T2 - Proc. MICCAI Workshop Medical Image Analysis for the Clinic Y1 - 2010 SP - 215 EP - 223 ER - TY - JOUR A1 - Hettich, G. A1 - Schierjott, R. A. A1 - Schilling, C. A1 - Maas, A. A1 - Ramm, Heiko A1 - Bindernagel, Matthias A1 - Lamecker, Hans A1 - Grupp, T. M. T1 - Validation of a Statistical Shape Model for Acetabular Bone Defect Analysis JF - ISTA 2018 London Abstract Book N2 - Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters. Y1 - 2018 ER - TY - JOUR A1 - Brüning, Jan A1 - Hildebrandt, Thomas A1 - Heppt, Werner A1 - Schmidt, Nora A1 - Lamecker, Hans A1 - Szengel, Angelika A1 - Amiridze, Natalja A1 - Ramm, Heiko A1 - Bindernagel, Matthias A1 - Zachow, Stefan A1 - Goubergrits, Leonid T1 - Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity JF - Scientific Reports N2 - This study’s objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced wall shear stresses and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently. Y1 - 2020 UR - https://rdcu.be/b2irD U6 - https://doi.org/10.1038/s41598-020-60755-3 VL - 3755 IS - 10 ER - TY - CHAP A1 - Bindernagel, Matthias A1 - Kainmüller, Dagmar A1 - Seim, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Hege, Hans-Christian T1 - An Articulated Statistical Shape Model of the Human Knee T2 - Bildverarbeitung für die Medizin 2011 Y1 - 2011 U6 - https://doi.org/10.1007/978-3-642-19335-4_14 SP - 59 EP - 63 PB - Springer ER - TY - GEN A1 - Bindernagel, Matthias A1 - Kainmüller, Dagmar A1 - Ramm, Heiko A1 - Lamecker, Hans A1 - Zachow, Stefan T1 - Analysis of inter-individual anatomical shape variations of joint structures T2 - Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS) Y1 - 2012 IS - 210 ER - TY - THES A1 - Bindernagel, Matthias T1 - Articulated Statistical Shape Models Y1 - 2013 ER -