TY - JOUR A1 - Tjusila, Gennesaret A1 - Besançon, Mathieu A1 - Turner, Mark A1 - Koch, Thorsten T1 - How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem JF - Operations Research Letters N2 - It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest. Y1 - 2024 U6 - https://doi.org/10.1016/j.orl.2024.107105 VL - 54 SP - 107105 ER - TY - CHAP A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Cutting Plane Selection with Analytic Centers and Multiregression T2 - Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. N2 - Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method. Y1 - 2023 U6 - https://doi.org/10.1007/978-3-031-33271-5_4 VL - 13884 SP - 52 EP - 68 PB - Springer ER -