TY - CHAP A1 - Villani, Paolo A1 - Unger, Jörg F. A1 - Weiser, Martin T1 - Adaptive Gaussian Process Regression for Bayesian inverse problems T2 - Proceedings of the Conference Algoritmy 2024 N2 - We introduce a novel adaptive Gaussian Process Regression (GPR) methodology for efficient construction of surrogate models for Bayesian inverse problems with expensive forward model evaluations. An adaptive design strategy focuses on optimizing both the positioning and simulation accuracy of training data in order to reduce the computational cost of simulating training data without compromising the fidelity of the posterior distributions of parameters. The method interleaves a goal-oriented active learning algorithm selecting evaluation points and tolerances based on the expected impact on the Kullback-Leibler divergence of surrogated and true posterior with a Markov Chain Monte Carlo sampling of the posterior. The performance benefit of the adaptive approach is demonstrated for two simple test problems. Y1 - 2024 SP - 214 EP - 224 ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - A Bayesian Framework for Simulation-based Digital Twins of Bridges JF - EUROSTRUCT 2023:European Association on Quality Control of Bridges and Structures: Digital Transformation in Sustainability N2 - Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management. Y1 - 2023 U6 - https://doi.org/10.1002/cepa.2177 VL - 6 IS - 5 SP - 734 EP - 740 ER - TY - CHAP A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - Evaluation of Model Bias Identification Approaches Based on Bayesian Inference and Applications to Digital Twins T2 - 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering N2 - In recent years, the use of simulation-based digital twins for monitoring and assessment of complex mechanical systems has greatly expanded. Their potential to increase the information obtained from limited data makes them an invaluable tool for a broad range of real-world applications. Nonetheless, there usually exists a discrepancy between the predicted response and the measurements of the system once built. One of the main contributors to this difference in addition to miscalibrated model parameters is the model error. Quantifying this socalled model bias (as well as proper values for the model parameters) is critical for the reliable performance of digital twins. Model bias identification is ultimately an inverse problem where information from measurements is used to update the original model. Bayesian formulations can tackle this task. Including the model bias as a parameter to be inferred enables the use of a Bayesian framework to obtain a probability distribution that represents the uncertainty between the measurements and the model. Simultaneously, this procedure can be combined with a classic parameter updating scheme to account for the trainable parameters in the original model. This study evaluates the effectiveness of different model bias identification approaches based on Bayesian inference methods. This includes more classical approaches such as direct parameter estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-FEM or orthogonal Gaussian Processes. Their potential use in digital twins, generalization capabilities, and computational cost is extensively analyzed. Y1 - 2023 UR - https://2023.uncecomp.org/proceedings/pdf/19795.pdf SP - 1 EP - 15 ER - TY - JOUR A1 - Maier, Kristina A1 - Weiser, Martin A1 - Conrad, Tim T1 - Hybrid PDE-ODE Models for Efficient Simulation of Infection Spread in Epidemiology JF - Proceedings of the Royal Society A N2 - This paper introduces a novel hybrid model combining Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs) to simulate infectious disease dynamics across geographic regions. By leveraging the spatial detail of PDEs and the computational efficiency of ODEs, the model enables rapid evaluation of public health interventions. Applied to synthetic environments and real-world scenarios in Lombardy, Italy, and Berlin, Germany, the model highlights how interactions between PDE and ODE regions affect infection dynamics, especially in high-density areas. Key findings reveal that the placement of model boundaries in densely populated regions can lead to inaccuracies in infection spread, suggesting that boundaries should be positioned in areas of lower population density to better reflect transmission dynamics. Additionally, regions with low population density hinder infection flow, indicating a need for incorporating, e.g., jumps in the model to enhance its predictive capabilities. Results indicate that the hybrid model achieves a balance between computational speed and accuracy, making it a valuable tool for policymakers in real-time decision-making and scenario analysis in epidemiology and potentially in other fields requiring similar modeling approaches. Y1 - 2025 U6 - https://doi.org/10.1098/rspa.2024.0421 VL - 481 IS - 2306 PB - Royal Society ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - Model bias identification for Bayesian calibration of stochastic digital twins of bridges JF - Applied Stochastic Models in Business and Industry N2 - Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model. Y1 - 2024 U6 - https://doi.org/10.1002/asmb.2897 VL - 41 IS - 3 ER - TY - JOUR A1 - Göbel, Fritz A1 - Huynh, Ngoc Mai Monica A1 - Chegini, Fatemeh A1 - Pavarino, Luca A1 - Weiser, Martin A1 - Scacchi, Simone A1 - Anzt, Hartwig T1 - A BDDC Preconditioner for the Cardiac EMI Model in three Dimensions JF - SIAM J. Sci. Comput. N2 - We analyze a Balancing Domain Decomposition by Constraints (BDDC) preconditioner for the solution of three dimensional composite Discontinuous Galerkin discretizations of reaction-diffusion systems of ordinary and partial differential equations arising in cardiac cell-by-cell models like the Extracellular space, Membrane and Intracellular space (EMI) Model. These microscopic models are essential for the understanding of events in aging and structurally diseased hearts which macroscopic models relying on homogenized descriptions of the cardiac tissue, like Monodomain and Bidomain models, fail to adequately represent. The modeling of each individual cardiac cell results in discontinuous global solutions across cell boundaries, requiring the careful construction of dual and primal spaces for the BDDC preconditioner. We provide a scalable condition number bound for the precondition operator and validate the theoretical results with extensive numerical experiments. Y1 - 2025 ER - TY - JOUR A1 - Subramaniam, Jayant Shanmugam A1 - Hubig, Michael A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Springer, Steffen A1 - Weiser, Martin A1 - Sudau, Jakob A1 - Shah, Faisal A1 - Mall, Gita T1 - Reconstructing Ambient Temperature in Forensic Death Time Estimation N2 - In medicolegal practice, time since death is estimated to assess alibi for homicide cases. Ambient temperature TA has a strong impact on cooling and therefore on temperature based time since death estimation (TTDE). At many crimescenes the ambient temperature TA1 is lowered instantaneously from a start value TA0 to a value TA1 at a certain time t0 during investigations due to human intervention such as window or door opening or body transport. Usually TA0 and t0 are unknown to the investigators. In this paper we focus on reconstruction of the unknown parameters TA0 and t0. Our approach is inspired by TTDE literature remarks of detecting said changes by measuring temperatures in closed compartments as e.g. cupboards or neighboring rooms of the crime scene, where TA0 could have been ‘preserved’ after t0. We aim to estimate t0 and TA0 from temperature measurements TZ(t) in closed compartments Z at times t > t0. We got results even under the most trivial assumption of Newtonian cooling for boxes filled with air, with heaps of clothes or even with books in two different experimental scenarios. Two different parameter estimators, (t0^, TA0^) using a single quadruple temperature measurement in two boxes and (t0*, TA0*) on the basis of weighted averaging the results of a series of N quadruple measurements during cooling of the two boxes respectively, were tested. Our results were partially appropriate for TTDE input. For example a sudden decline at time t0 from TA0 = 22.5°C to TA1 = 14°C of the ambient temperature in a climate chamber could be reconstructed at t = t0 + 95min with relative deviations ρt0^ = 27% and ρTA0^ = 19% of the estimators relative to t - t0 and TA0 – TA1 respectively, only based on N = 1 quadruple measurement with a span of Δt = 50min. In case of N = 200 quadruple measurements starting at t = t0 + 95min and ending at t = t0 + 295min we found for weighted mean estimators distinctively reduced relative deviations ρt0^ = 5% and ρTA0^ = 11% with the same quadruple span Δt = 50min. Further research is necessary to guarantee applicability in routine case work. We will investigate more elaborate cooling models, estimation algorithms and evaluation localization. Y1 - 2025 ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Phaedon-Stelios A1 - Unger, Jörg F. T1 - Bias Identification Approaches for Model Updating of Simulation-based Digital Twins of Bridges JF - Structural Health Monitoring in the Light of Climate Impact and Data Science. Research and Review Journal of Nondestructive Testing N2 - Simulation-based digital twins of bridges have the potential not only to serve as monitoring devices of the current state of the structure but also to generate new knowledge through physical predictions that allow for better-informed decisionmaking. For an accurate representation of the bridge, the underlying models must be tuned to reproduce the real system. Nevertheless, the necessary assumptions and simplifications in these models irremediably introduce discrepancies between measurements and model response. We will show that quantifying the extent of the uncertainties introduced through the models that lead to such discrepancies provides a better understanding of the real system, enhances the model updating process, and creates more robust and trustworthy digital twins. The inclusion of an explicit bias term will be applied to a representative demonstrator case based on the thermal response of the Nibelungenbrücke of Worms. The findings from this work are englobed in the initiative SPP 100+, whose main aim is the extension of the service life of structures, especially through the implementation of digital twins. Y1 - 2024 U6 - https://doi.org/10.58286/30524 VL - 2 IS - 2 ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Phaedon-Stelios A1 - Unger, Jörg F. T1 - Embedded Model Form Uncertainty Quantification with Measurement Noise for Bayesian Model Calibration N2 - A key factor in ensuring the accuracy of computer simulations that model physical systems is the proper calibration of their parameters based on real-world observations or experimental data. Inevitably, uncertainties arise, and Bayesian methods provide a robust framework for quantifying and propagating these uncertainties to model predictions. Nevertheless, Bayesian methods paired with inexact models usually produce predictions unable to represent the observed datapoints. Additionally, the quantified uncertainties of these overconfident models cannot be propagated to other Quantities of Interest (QoIs) reliably. A promising solution involves embedding a model inadequacy term in the inference parameters, allowing the quantified model form uncertainty to influence non-observed QoIs. This paper introduces a more interpretable framework for embedding the model inadequacy compared to existing methods. To overcome the limitations of current approaches, we adapt the existing likelihood models to properly account for noise in the measurements and propose two new formulations designed to address their shortcomings. Moreover, we evaluate the performance of this inadequacy-embedding approach in the presence of discrepancies between measurements and model predictions, including noise and outliers. Particular attention is given to how the uncertainty associated with the model inadequacy term propagates to the QoIs, enabling a more comprehensive statistical analysis of prediction’s reliability. Finally, the proposed approach is applied to estimate the uncertainty in the predicted heat flux from a transient thermal simulation using temperature bservations. Y1 - 2025 ER - TY - CHAP A1 - Chegini, Fatemeh A1 - Kopanicakova, Alena A1 - Weiser, Martin A1 - Krause, Rolf T1 - Quantitative Analysis of Nonlinear MultifidelityOptimization for Inverse Electrophysiology T2 - Domain Decomposition Methods in Science and Engineering XXVI N2 - The electric conductivity of cardiac tissue determines excitation propagation and is important for quantifying ischemia and scar tissue and for building personalized models. Estimating conductivity distributions from endocardial mapping data is a challenging inverse problem due to the computational complexity of the monodomain equation, which describes the cardiac excitation. For computing a maximum posterior estimate, we investigate different optimization approaches based on adjoint gradient computation: steepest descent, limited memory BFGS, and recursive multilevel trust region methods, which are using mesh hierarchies or heterogeneous model hierarchies. We compare overall performance, asymptotic convergence rate, and pre-asymptotic progress on selected examples in order to assess the benefit of our multifidelity acceleration. Y1 - 2022 SP - 65 EP - 76 PB - Springer ER - TY - JOUR A1 - Alhaddad, Samer A1 - Förstner, Jens A1 - Groth, Stefan A1 - Grünewald, Daniel A1 - Grynko, Yevgen A1 - Hannig, Frank A1 - Kenter, Tobias A1 - Pfreundt, F.J. A1 - Plessl, Christian A1 - Schotte, Merlind A1 - Steinke, Thomas A1 - Teich, J. A1 - Weiser, Martin A1 - Wende, Florian T1 - The HighPerMeshes Framework for Numerical Algorithms on Unstructured Grids JF - Concurrency and Computation: Practice and Experience N2 - Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems. Y1 - 2022 U6 - https://doi.org/10.1002/cpe.6616 VL - 34 IS - 14 ER - TY - GEN A1 - Weiser, Martin A1 - Chegini, Fatemeh T1 - Higher-order time integration using spectral deferred correction method (SDC) in a cell by cell discretization of cardiac excitation N2 - This C++ code implements a cell-by-cell model of cardiac excitation using a piecewise-continuous finite element discretization and spectral deferred correction time stepping. The code is based on the Kaskade 7 finite element toolbox and forms a prototype for the µCarp code to be implemented in the Microcard project. Y1 - 2022 U6 - https://doi.org/10.35097/716 ER - TY - JOUR A1 - Niemann, Jan-Hendrik A1 - Uram, Samuel A1 - Wolf, Sarah A1 - Conrad, Natasa Djurdjevac A1 - Weiser, Martin T1 - Multilevel Optimization for Policy Design with Agent-Based Epidemic Models JF - Computational Science N2 - Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples. Y1 - 2024 U6 - https://doi.org/10.1016/j.jocs.2024.102242 VL - 77 SP - 102242 ER - TY - CHAP A1 - Gander, Lia A1 - Krause, Rolf A1 - Weiser, Martin A1 - Costabal, Francisco A1 - Pezzuto, Simone T1 - On the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis T2 - Functional Imaging and Modeling of the Heart. FIMH 2023. N2 - Fibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation. Y1 - 2023 U6 - https://doi.org/10.1007/978-3-031-35302-4_14 VL - 13958 PB - Springer, Cham ER - TY - JOUR A1 - Subramaniam, Jayant S. A1 - Hubig, Michael A1 - Muggenthaler, Holger A1 - Schenkl, Sebastian A1 - Ullrich, Julia A1 - Pourtier, Grégroire A1 - Weiser, Martin A1 - Mall, Gita T1 - Sensitivity of temperature-based time since death estimation on measurement location JF - International Journal of Legal Medicine N2 - Rectal temperature measurement (RTM) from crime scenes is an important parameter for temperature-based time of death estimation (TDE). Various influential variables exist in TDE methods like the uncertainty in thermal and environmental parameters. Although RTM depends in particular on the location of measurement position, this relationship has never been investigated separately. The presented study fills this gap using Finite Element (FE) simulations of body cooling. A manually meshed coarse human FE model and an FE geometry model developed from the CT scan of a male corpse are used for TDE sensitivity analysis. The coarse model is considered with and without a support structure of moist soil. As there is no clear definition of ideal rectal temperature measurement location for TDE, possible variations in RTM location (RTML) are considered based on anatomy and forensic practice. The maximum variation of TDE caused by RTML changes is investigated via FE simulation. Moreover, the influence of ambient temperature, of FE model change and of the models positioning on a wet soil underground are also discussed. As a general outcome, we notice that maximum TDE deviations of up to ca. 2-3 h due to RTML deviations have to be expected. The direction of maximum influence of RTML change on TDE generally was on the line caudal to cranial. Y1 - 2023 U6 - https://doi.org/10.1007/s00414-023-03040-y VL - 137 SP - 1815 EP - 1837 ER - TY - JOUR A1 - Semler, Phillip A1 - Weiser, Martin T1 - Adaptive Gaussian Process Regression for Efficient Building of Surrogate Models in Inverse Problems JF - Inverse Problems N2 - In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model y with a surrogate model y(s) that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that y(s) is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures. Y1 - 2023 U6 - https://doi.org/10.1088/1361-6420/ad0028 VL - 39 IS - 12 SP - 125003 ER - TY - JOUR A1 - Ullrich, Julia A1 - Weiser, Martin A1 - Subramaniam, Jayant A1 - Schenkl, Sebastian A1 - Muggenthaler, Holger A1 - Hubig, Michael A1 - Mall, Gita T1 - The impact of anatomy variation on temperature based time of death estimation JF - International Journal of Legal Medicine N2 - Temperature-based time of death estimation (TTDE) using simulation methods such as the finite element (FE) method promises higher accuracy and broader applicability in nonstandard cooling scenarios than established phenomenological methods. Their accuracy depends crucially on the simulation model to capture the actual situation. The model fidelity in turn hinges on the representation of the corpse’s anatomy in form of computational meshes as well as on the thermodynamic parameters. While inaccuracies in anatomy representation due to coarse mesh resolution are known to have a minor impact on the estimated time of death, the sensitivity with respect to larger differences in the anatomy has so far not been studied. We assess this sensitivity by comparing four independently generated and vastly different anatomical models in terms of the estimated time of death in an identical cooling scenario. In order to isolate the impact of shape variation, the models are scaled to a reference size, and the possible impact of measurement location variation is excluded explicitly, which gives a lower bound on the impact of anatomy on the estimated time of death. Y1 - 2023 U6 - https://doi.org/10.1007/s00414-023-03026-w VL - 137 SP - 1615 EP - 1627 ER - TY - CHAP A1 - Chegini, Fatemeh A1 - Steinke, Thomas A1 - Weiser, Martin T1 - Efficient adaptivity for simulating cardiac electrophysiology with spectral deferred correction methods N2 - The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples. Y1 - 2022 ER - TY - JOUR A1 - Huynh, Ngoc A1 - Chegini, Fatemeh A1 - Pavarino, Luca A1 - Weiser, Martin A1 - Scacchi, Simone T1 - Convergence analysis of BDDC preconditioners for hybrid DG discretizations of the cardiac cell-by-cell model JF - SIAM Journal on Scientific Computing N2 - A Balancing Domain Decomposition by Constraints (BDDC) preconditioner is constructed and analyzed for the solution of hybrid Discontinuous Galerkin discretizations of reaction-diffusion systems of ordinary and partial differential equations arising in cardiac cell-by-cell models. The latter are different from the classical Bidomain and Monodomain cardiac models based on homogenized descriptions of the cardiac tissue at the macroscopic level, and therefore they allow the representation of individual cardiac cells, cell aggregates, damaged tissues and nonuniform distributions of ion channels on the cell membrane. The resulting discrete cell-by-cell models have discontinuous global solutions across the cell boundaries, hence the proposed BDDC preconditioner is based on appropriate dual and primal spaces with additional constraints which transfer information between cells (subdomains) without influencing the overall discontinuity of the global solution. A scalable convergence rate bound is proved for the resulting BDDC cell-by-cell preconditioned operator, while numerical tests validate this bound and investigate its dependence on the discretization parameters. Y1 - 2023 VL - 45 IS - 6 SP - A2836 EP - A2857 ER - TY - JOUR A1 - Carderera, Alejandro A1 - Pokutta, Sebastian A1 - Schütte, Christof A1 - Weiser, Martin T1 - An efficient first-order conditional gradient algorithm in data-driven sparse identification of nonlinear dynamics to solve sparse recovery problems under noise JF - Journal of Computational and Applied Mathematics N2 - Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry. Y1 - 2021 ER -