TY - JOUR A1 - Fischer, Lisa A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy data compression reduces communication time in hybrid time-parallel integrators JF - Comput. Vis. Sci. N2 - Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups. Y1 - 2018 U6 - https://doi.org/10.1007/s00791-018-0293-2 VL - 19 IS - 1 SP - 19 EP - 30 ER - TY - GEN A1 - Deuflhard, Peter A1 - Kornhuber, Ralf A1 - Sander, Oliver A1 - Schiela, Anton A1 - Weiser, Martin ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - Mathematics cures virtual patients T2 - MATHEON-Mathematics for Key Technologies Y1 - 2014 VL - 1 SP - 7 EP - 25 PB - European Mathematical Society ER - TY - JOUR A1 - Moualeu-Ngangue, Dany Pascal A1 - Weiser, Martin A1 - Ehrig, Rainald A1 - Deuflhard, Peter T1 - Optimal control for a tuberculosis model with undetected cases in Cameroon JF - Communications in Nonlinear Science and Numerical Simulation N2 - This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 % in 10 years. Y1 - 2015 U6 - https://doi.org/10.1016/j.cnsns.2014.06.037 VL - 20 IS - 3 SP - 986 EP - 1003 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Maierhofer, Christiane A1 - Richter, Regina ED - Cardone, Gennaro T1 - Data Enhancement for Active Thermography T2 - E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, Naples N2 - Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise. Y1 - 2012 ER - TY - JOUR A1 - Weiser, Martin T1 - On goal-oriented adaptivity for elliptic optimal control problems JF - Opt. Meth. Softw. N2 - The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples. Y1 - 2013 VL - 28 IS - 13 SP - 969 EP - 992 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Schiela, Anton A1 - Weiser, Martin T1 - Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia JF - Acta Numerica N2 - This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator. Y1 - 2012 VL - 21 SP - 307 EP - 378 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Schiela, Anton ED - Dedner, A. ED - Flemisch, B. ED - Klöfkorn, R. T1 - Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox T2 - Advances in DUNE N2 - This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. Y1 - 2012 SP - 101 EP - 112 PB - Springer ER - TY - JOUR A1 - Weiser, Martin T1 - Faster SDC convergence on non-equidistant grids by DIRK sweeps JF - BIT Numerical Mathematics N2 - Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples. Y1 - 2015 U6 - https://doi.org/10.1007/s10543-014-0540-y VL - 55 IS - 4 SP - 1219 EP - 1241 ER - TY - JOUR A1 - Weiser, Martin A1 - Götschel, Sebastian T1 - State Trajectory Compression for Optimal Control with Parabolic PDEs JF - SIAM J. Sci. Comput. N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient. Y1 - 2012 U6 - https://doi.org/10.1137/11082172X VL - 34 IS - 1 SP - A161 EP - A184 ER - TY - GEN A1 - Nadobny, Johanna A1 - Weihrauch, Mirko A1 - Weiser, Martin A1 - Gellermann, Johanna A1 - Wlodarczyk, Waldemar A1 - Budach, Volker A1 - Wust, Peter T1 - Advances in the Planning and Control of the MR-guided Regional Hyperthermia Applications T2 - Proc. Int. Conf. Electromagnetics in Advanced Applications, ICEAA 2007, Torino, Italy Y1 - 2007 SP - 1010 EP - 1013 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - State Trajectory Compression in Optimal Control JF - PAMM N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error. Y1 - 2010 U6 - https://doi.org/10.1002/pamm.201010282 VL - 10 IS - 1 SP - 579 EP - 580 ER - TY - GEN A1 - Weiser, Martin T1 - Delayed Residual Compensation for Bidomain Equations T2 - AIP Conference Proceedings N2 - The biodomain model of cardioelectric excitation consists of a reaction‐diffusion equation, an elliptic algebraic constraint, and a set of pointwise ODEs. Fast reaction enforces small time steps, such that for common mesh sizes the reaction‐diffusion equation is easily solved implicitly due to a dominating mass matrix. In contrast, the elliptic constraint does not benefit from small time steps and requires a comparably expensive solution. We propose a delayed residual compensation that improves the solution of the elliptic constraint and thus alleviates the need for long iteration times. Y1 - 2010 U6 - https://doi.org/10.1063/1.3498495 VL - 1281 SP - 419 EP - 422 ER - TY - GEN A1 - Weiser, Martin A1 - Erdmann, Bodo A1 - Deuflhard, Peter ED - Wilson, E. ED - Fitt, A. ED - Ockendon, H. ED - Norbury, J. T1 - On Efficiency and Accuracy in Cardioelectric Simulation T2 - Progress in Industrial Mathematics at ECMI 2008 N2 - Reasons for the failure of adaptive methods to deliver improved efficiency when integrating monodomain models for myocardiac excitation are discussed. Two closely related techniques for reducing the computational complexity of linearly implicit integrators, deliberate sparsing and splitting, are investigated with respect to their impact on computing time and accuracy. Y1 - 2010 SP - 371 EP - 376 PB - Springer ER - TY - JOUR A1 - Wilhelms, Mathias A1 - Seemann, Gunnar A1 - Weiser, Martin A1 - Dössel, Olaf T1 - Benchmarking Solvers of the Monodomain Equation in Cardiac Electrophysiological Modeling JF - Biomed. Engineer. Y1 - 2010 U6 - https://doi.org/10.1515/BMT.2010.712 VL - 55 SP - 99 EP - 102 ER - TY - GEN A1 - Wust, Peter A1 - Weihrauch, Mirko A1 - Weiser, Martin A1 - Gellermann, Johanna A1 - Eisenhardt, Steffen A1 - Chobrok, Thorsten A1 - Budach, Volker ED - Dössel, O. ED - Schlegel, W. ED - Magjarevic, R. T1 - Optimization of clinical radiofrequency hyperthermia by use of MR-thermography in a hybrid system T2 - World Congress on Medical Physics and Biomedical Engineering, September 2009, Munich, Germany Y1 - 2010 SP - 174 EP - 175 PB - Springer ER - TY - JOUR A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An optimal control problem in polyconvex hyperelasticity JF - SIAM J. Control Opt. N2 - We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented. Y1 - 2014 U6 - https://doi.org/10.1137/120876629 VL - 52 IS - 3 SP - 1403 EP - 1422 ER - TY - JOUR A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin T1 - Flexible Shape Matching with Finite Element Based LDDMM JF - International Journal of Computer Vision N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. Y1 - 2013 U6 - https://doi.org/10.1007/s11263-012-0599-3 VL - 105 IS - 2 SP - 128 EP - 143 ER - TY - GEN A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin ED - Pennec, X. ED - Joshi, S. ED - Nielsen, M. T1 - Direct LDDMM of Discrete Currents with Adaptive Finite Elements T2 - Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. Y1 - 2011 SP - 1 EP - 14 ER - TY - GEN A1 - Schiela, Anton A1 - Weiser, Martin ED - Diehl, M. ED - Glineur, F. ED - Jarlebring, E. ED - Michiels, W. T1 - Barrier methods for a control problem from hyperthermia treatment planning T2 - Recent Advances in Optimization and its Applications in Engineering (Proceedings of 14th Belgian-French-German Conference on Optimization 2009) N2 - We consider an optimal control problem from hyperthermia treatment planning and its barrier regularization. We derive basic results, which lay the groundwork for the computation of optimal solutions via an interior point path-following method. Further, we report on a numerical implementation of such a method and its performance at an example problem. Y1 - 2010 SP - 419 EP - 428 PB - Springer ER - TY - JOUR A1 - Weiser, Martin A1 - Röllig, Mathias A1 - Arndt, Ralf A1 - Erdmann, Bodo T1 - Development and test of a numerical model for pulse thermography in civil engineering JF - Heat and Mass Transfer N2 - Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens. Y1 - 2010 VL - 46 IS - 11-12 SP - 1419 EP - 1428 ER -