TY - JOUR A1 - Alhaddad, Samer A1 - Förstner, Jens A1 - Groth, Stefan A1 - Grünewald, Daniel A1 - Grynko, Yevgen A1 - Hannig, Frank A1 - Kenter, Tobias A1 - Pfreundt, F.J. A1 - Plessl, Christian A1 - Schotte, Merlind A1 - Steinke, Thomas A1 - Teich, J. A1 - Weiser, Martin A1 - Wende, Florian T1 - The HighPerMeshes Framework for Numerical Algorithms on Unstructured Grids JF - Concurrency and Computation: Practice and Experience N2 - Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems. Y1 - 2022 U6 - https://doi.org/10.1002/cpe.6616 VL - 34 IS - 14 ER - TY - JOUR A1 - Alhaddad, Samer A1 - Förstner, Jens A1 - Groth, Stefan A1 - Grünewald, Daniel A1 - Grynko, Yevgen A1 - Hannig, Frank A1 - Kenter, Tobias A1 - Pfreundt, Franz-Josef A1 - Plessl, Christian A1 - Schotte, Merlind A1 - Steinke, Thomas A1 - Teich, Jürgen A1 - Weiser, Martin A1 - Wende, Florian T1 - HighPerMeshes - A Domain-Specific Language for Numerical Algorithms on Unstructured Grids JF - Euro-Par 2020: Parallel Processing Workshops. N2 - Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-71593-9_15 SP - 185 EP - 196 PB - Springer ER - TY - CHAP A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - Evaluation of Model Bias Identification Approaches Based on Bayesian Inference and Applications to Digital Twins T2 - 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering N2 - In recent years, the use of simulation-based digital twins for monitoring and assessment of complex mechanical systems has greatly expanded. Their potential to increase the information obtained from limited data makes them an invaluable tool for a broad range of real-world applications. Nonetheless, there usually exists a discrepancy between the predicted response and the measurements of the system once built. One of the main contributors to this difference in addition to miscalibrated model parameters is the model error. Quantifying this socalled model bias (as well as proper values for the model parameters) is critical for the reliable performance of digital twins. Model bias identification is ultimately an inverse problem where information from measurements is used to update the original model. Bayesian formulations can tackle this task. Including the model bias as a parameter to be inferred enables the use of a Bayesian framework to obtain a probability distribution that represents the uncertainty between the measurements and the model. Simultaneously, this procedure can be combined with a classic parameter updating scheme to account for the trainable parameters in the original model. This study evaluates the effectiveness of different model bias identification approaches based on Bayesian inference methods. This includes more classical approaches such as direct parameter estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-FEM or orthogonal Gaussian Processes. Their potential use in digital twins, generalization capabilities, and computational cost is extensively analyzed. Y1 - 2023 UR - https://2023.uncecomp.org/proceedings/pdf/19795.pdf SP - 1 EP - 15 ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - A Bayesian Framework for Simulation-based Digital Twins of Bridges JF - EUROSTRUCT 2023:European Association on Quality Control of Bridges and Structures: Digital Transformation in Sustainability N2 - Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management. Y1 - 2023 U6 - https://doi.org/10.1002/cepa.2177 VL - 6 IS - 5 SP - 734 EP - 740 ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, Martin A1 - Koutsourelakis, Faidon-Stelios A1 - Unger, Jörg F. T1 - Model bias identification for Bayesian calibration of stochastic digital twins of bridges N2 - Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model. Y1 - 2023 ER - TY - JOUR A1 - Bartels, Tinko A1 - Fisikopoulos, Vissarion A1 - Weiser, Martin T1 - Fast Floating-Point Filters for Robust Predicates JF - BIT Numerical Mathematics N2 - Geometric predicates are at the core of many algorithms, such as the construction of Delaunay triangulations, mesh processing and spatial relation tests. These algorithms have applications in scientific computing, geographic information systems and computer-aided design. With floating-point arithmetic, these geometric predicates can incur round-off errors that may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination of exact arithmetic for robustness and floating-point filters to mitigate the computational cost of exact computations. The implementation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary geometric predicates based on polynomial expressions. We combine and extend different approaches to filtering, branch reduction, and overflow avoidance that have previously been proposed. We show examples of how this approach produces correct results for data sets that could lead to incorrect predicate results with naive implementations. Our benchmark results demonstrate that our implementation surpasses state-of-the-art implementations. Y1 - 2023 U6 - https://doi.org/10.1007/s10543-023-00975-x VL - 63 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Globally Optimal Free Flight Trajectory Optimization T2 - 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022) N2 - We present an efficient algorithm that finds a globally optimal solution to the 2D Free Flight Trajectory Optimization Problem (aka Zermelo Navigation Problem) up to arbitrary precision in finite time. The algorithm combines a discrete and a continuous optimization phase. In the discrete phase, a set of candidate paths that densely covers the trajectory space is created on a directed auxiliary graph. Then Yen’s algorithm provides a promising set of discrete candidate paths which subsequently undergo a locally convergent refinement stage. Provided that the auxiliary graph is sufficiently dense, the method finds a path that lies within the convex domain around the global minimizer. From this starting point, the second stage will converge rapidly to the optimum. The density of the auxiliary graph depends solely on the wind field, and not on the accuracy of the solution, such that the method inherits the superior asymptotic convergence properties of the optimal control stage. Y1 - 2022 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2022.2 VL - 106 SP - 1 EP - 13 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Newton's Method for Global Free Flight Trajectory Optimization JF - Operations Research Forum N2 - Globally optimal free flight trajectory optimization can be achieved with a combination of discrete and continuous optimization. A key requirement is that Newton's method for continuous optimization converges in a sufficiently large neighborhood around a minimizer. We show in this paper that, under certain assumptions, this is the case. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91846 VL - 4 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - A Discrete-Continuous Algorithm for Free Flight Planning JF - Algorithms N2 - We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach. KW - shortest path KW - flight planning KW - free flight KW - discrete-continuous algorithm KW - optimal control KW - discrete optimization Y1 - 2020 U6 - https://doi.org/10.3390/a14010004 SN - 1438-0064 VL - 14 IS - 1 SP - 4 PB - MDPI ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Danecker, Fabian A1 - Weiser, Martin T1 - Convergence Properties of Newton’s Method for Globally Optimal Free Flight Trajectory Optimization T2 - 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023) N2 - The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition. Y1 - 2023 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2023.3 VL - 115 SP - 3:1 EP - 3:6 ER - TY - JOUR A1 - Carderera, Alejandro A1 - Pokutta, Sebastian A1 - Schütte, Christof A1 - Weiser, Martin T1 - CINDy: Conditional gradient-based Identification of Non-linear Dynamics – Noise-robust recovery JF - Journal of Computational and Applied Mathematics N2 - Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry. Y1 - 2021 ER - TY - CHAP A1 - Chegini, Fatemeh A1 - Froehly, Algiane A1 - Huynh, Ngoc Mai Monica A1 - Pavarino, Luca A1 - Potse, Mark A1 - Scacchi, Simone A1 - Weiser, Martin T1 - Efficient numerical methods for simulating cardiac electrophysiology with cellular resolution T2 - 10th Int. Conf. Computational Methods for Coupled Problems in Science and Engineering 2023 N2 - The cardiac extracellular-membrane-intracellular (EMI) model enables the precise geometrical representation and resolution of aggregates of individual myocytes. As a result, it not only yields more accurate simulations of cardiac excitation compared to homogenized models but also presents the challenge of solving much larger problems. In this paper, we introduce recent advancements in three key areas: (i) the creation of artificial, yet realistic grids, (ii) efficient higher-order time stepping achieved by combining low-overhead spatial adaptivity on the algebraic level with progressive spectral deferred correction methods, and (iii) substructuring domain decomposition preconditioners tailored to address the complexities of heterogeneous problem structures. The efficiency gains of these proposed methods are demonstrated through numerical results on cardiac meshes of different sizes. Y1 - 2023 UR - https://www.scipedia.com/public/2023f U6 - https://doi.org/10.23967/c.coupled.2023.004 ER - TY - JOUR A1 - Chegini, Fatemeh A1 - Kopanicakova, Alena A1 - Krause, Rolf A1 - Weiser, Martin T1 - Efficient Identification of Scars using Heterogeneous Model Hierarchies JF - EP Europace N2 - Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data. Y1 - 2021 U6 - https://doi.org/10.1093/europace/euaa402 VL - 23 SP - i113 EP - i122 ER - TY - CHAP A1 - Chegini, Fatemeh A1 - Kopanicakova, Alena A1 - Weiser, Martin A1 - Krause, Rolf T1 - Quantitative Analysis of Nonlinear MultifidelityOptimization for Inverse Electrophysiology T2 - Domain Decomposition Methods in Science and Engineering XXVI N2 - The electric conductivity of cardiac tissue determines excitation propagation and is important for quantifying ischemia and scar tissue and for building personalized models. Estimating conductivity distributions from endocardial mapping data is a challenging inverse problem due to the computational complexity of the monodomain equation, which describes the cardiac excitation. For computing a maximum posterior estimate, we investigate different optimization approaches based on adjoint gradient computation: steepest descent, limited memory BFGS, and recursive multilevel trust region methods, which are using mesh hierarchies or heterogeneous model hierarchies. We compare overall performance, asymptotic convergence rate, and pre-asymptotic progress on selected examples in order to assess the benefit of our multifidelity acceleration. Y1 - 2022 SP - 65 EP - 76 PB - Springer ER - TY - CHAP A1 - Chegini, Fatemeh A1 - Steinke, Thomas A1 - Weiser, Martin T1 - Efficient adaptivity for simulating cardiac electrophysiology with spectral deferred correction methods N2 - The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples. Y1 - 2022 ER - TY - GEN A1 - Deuflhard, Peter A1 - Kornhuber, Ralf A1 - Sander, Oliver A1 - Schiela, Anton A1 - Weiser, Martin ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - Mathematics cures virtual patients T2 - MATHEON-Mathematics for Key Technologies Y1 - 2014 VL - 1 SP - 7 EP - 25 PB - European Mathematical Society ER - TY - JOUR A1 - Deuflhard, Peter A1 - Schiela, Anton A1 - Weiser, Martin T1 - Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia JF - Acta Numerica N2 - This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator. Y1 - 2012 VL - 21 SP - 307 EP - 378 ER - TY - CHAP A1 - Deuflhard, Peter A1 - Weiser, Martin ED - et al. Hackbusch, Wolfgang T1 - Global inexact Newton multilevel FEM for nonlinear elliptic problems T2 - Multigrid methods V. proceedings of the 5th European multigrid conference, held in Stuttgart, Germany, October 1–4, 1996. Y1 - 1998 VL - 3 SP - 71 EP - 89 PB - Berlin: Springer ER - TY - BOOK A1 - Deuflhard, Peter A1 - Weiser, Martin T1 - Numerische Mathematik 3 Y1 - 2011 PB - de Gruyter, Berlin ER - TY - BOOK A1 - Deuflhard, Peter A1 - Weiser, Martin T1 - Adaptive numerical solution of PDEs Y1 - 2012 PB - de Gruyter CY - Berlin ER - TY - BOOK A1 - Deuflhard, Peter A1 - Weiser, Martin T1 - Numerische Mathematik 3. Adaptive Lösung partieller Differentialgleichungen Y1 - 2020 SN - 978-3-11-069168-9 U6 - https://doi.org/10.1515/9783110689655 PB - de Gruyter ET - 2 ER - TY - CHAP A1 - Deuflhard, Peter A1 - Weiser, Martin ED - et al. Bristeau, M.-O. T1 - Local inexact Newton multilevel FEM for nonlinear elliptic problems T2 - Computational science for the 21st century Y1 - 1997 SP - 129 EP - 138 PB - Chichester: John Wiley & Sons. ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebass, Martin T1 - A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning JF - Comput. Vis. Sci. Y1 - 2000 VL - 3 SP - 115 EP - 120 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Seebaß, Martin T1 - A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia JF - Comput. Visual. Sci. Y1 - 2000 U6 - https://doi.org/10.1007/PL00013546 VL - 3 SP - 1 EP - 6 ER - TY - JOUR A1 - Deuflhard, Peter A1 - Weiser, Martin A1 - Zachow, Stefan T1 - Mathematics in Facial Surgery JF - AMS Notices Y1 - 2006 VL - 53 IS - 9 SP - 1012 EP - 1016 ER - TY - CHAP A1 - Dhanakoti, Siva Prasad Chakri A1 - Maddocks, John A1 - Weiser, Martin T1 - Navigation of Concentric Tube Continuum Robots using Optimal Control T2 - Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics N2 - Recently developed Concentric Tube Continuum Robots (CTCRs) are widely exploited in, for example in minimally invasive surgeries which involve navigating inside narrow body cavities close to sensitive regions. These CTCRs can be controlled by extending and rotating the tubes in order to reach a target point or perform some task. The robot must deviate as little as possible from this narrow space and avoid damaging neighbouring tissue. We consider \emph{open-loop} optimal control of CTCRs parameterized over pseudo-time, primarily aiming at minimizing the robot's working volume during its motion. External loads acting on the system like tip loads or contact with tissues are not considered here. We also discussed the inclusion of tip's orientation in the optimal framework to perform some tasks. We recall a quaternion-based formulation of the robot configuration, discuss discretization, develop optimization objectives addressing different criteria, and investigate their impact on robot path planning for several numerical examples. This optimal framework can be applied to any backbone based continuum robots. Y1 - 2022 U6 - https://doi.org/10.5220/0011271000003271 SP - 146 EP - 154 ER - TY - JOUR A1 - Fischer, Lisa A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy data compression reduces communication time in hybrid time-parallel integrators JF - Comput. Vis. Sci. N2 - Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups. Y1 - 2018 U6 - https://doi.org/10.1007/s00791-018-0293-2 VL - 19 IS - 1 SP - 19 EP - 30 ER - TY - CHAP A1 - Gander, Lia A1 - Krause, Rolf A1 - Weiser, Martin A1 - Costabal, Francisco A1 - Pezzuto, Simone T1 - On the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis T2 - Functional Imaging and Modeling of the Heart. FIMH 2023. N2 - Fibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation. Y1 - 2023 U6 - https://doi.org/10.1007/978-3-031-35302-4_14 VL - 13958 PB - Springer, Cham ER - TY - JOUR A1 - Gellermann, Johanna A1 - Weihrauch, Mirko A1 - Cho, C. A1 - Wlodarczyk, Waldemar A1 - Fähling, Horst A1 - Felix, Roland A1 - Budach, Volker A1 - Weiser, Martin A1 - Nadobny, Johanna A1 - Wust, Peter T1 - Comparison of MR-thermography and planning calculations in phantoms JF - Medical Physics Y1 - 2006 VL - 33 SP - 3912 EP - 3920 ER - TY - JOUR A1 - Griesse, Roland A1 - Weiser, Martin T1 - On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control JF - Journal of Mathematical Analysis and Applications Y1 - 2008 SP - 771 EP - 793 ER - TY - JOUR A1 - Gänzler, Tobias A1 - Volkwein, S. A1 - Weiser, Martin T1 - SQP methods for parameter identification problems arising in hyperthermia JF - Optim. Methods Softw. Y1 - 2006 VL - 21 IS - 6 SP - 869 EP - 887 ER - TY - CHAP A1 - Götschel, Sebastian A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Weiser, Martin T1 - Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing T2 - Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016) Y1 - 2016 UR - https://www.wcndt2016.com/portals/wcndt/bb/Fr1H4.pdf ER - TY - CHAP A1 - Götschel, Sebastian A1 - Maierhofer, Christiane A1 - Müller, Jan A1 - Rothbart, Nick A1 - Weiser, Martin T1 - Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites T2 - Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016) Y1 - 2016 UR - https://www.wcndt2016.com/portals/wcndt/bb/Th4C4.pdf ER - TY - JOUR A1 - Götschel, Sebastian A1 - Nagaiah, Chamakuri A1 - Kunisch, Karl A1 - Weiser, Martin T1 - Lossy Compression in Optimal Control of Cardiac Defibrillation JF - J. Sci. Comput. N2 - This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples. Y1 - 2014 U6 - https://doi.org/10.1007/s10915-013-9785-x VL - 60 IS - 1 SP - 35 EP - 59 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Schiela, Anton A1 - Weiser, Martin T1 - Kaskade 7 - a Flexible Finite Element Toolbox JF - Computers and Mathematics with Applications N2 - Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the \textsc{Dune} interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way. Y1 - 2021 U6 - https://doi.org/10.1016/j.camwa.2020.02.011 VL - 81 SP - 444 EP - 458 ER - TY - CHAP A1 - Götschel, Sebastian A1 - Tycowicz, Christoph von A1 - Polthier, Konrad A1 - Weiser, Martin ED - Carraro, T. ED - Geiger, M. ED - Koerkel, S. ED - Rannacher, R. T1 - Reducing Memory Requirements in Scientific Computing and Optimal Control T2 - Multiple Shooting and Time Domain Decomposition Methods Y1 - 2015 SP - 263 EP - 287 PB - Springer ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - State Trajectory Compression in Optimal Control JF - PAMM N2 - In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error. Y1 - 2010 U6 - https://doi.org/10.1002/pamm.201010282 VL - 10 IS - 1 SP - 579 EP - 580 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Lossy Compression for PDE-constrained Optimization: Adaptive Error Control JF - Comput. Optim. Appl. N2 - For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances. Y1 - 2015 VL - 62 IS - 1 SP - 131 EP - 155 PB - Springer ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin T1 - Compression Challenges in Large Scale Partial Differential Equation Solvers JF - Algorithms N2 - Solvers for partial differential equations (PDEs) are one of the cornerstones of computational science. For large problems, they involve huge amounts of data that need to be stored and transmitted on all levels of the memory hierarchy. Often, bandwidth is the limiting factor due to the relatively small arithmetic intensity, and increasingly due to the growing disparity between computing power and bandwidth. Consequently, data compression techniques have been investigated and tailored towards the specific requirements of PDE solvers over the recent decades. This paper surveys data compression challenges and discusses examples of corresponding solution approaches for PDE problems, covering all levels of the memory hierarchy from mass storage up to the main memory. We illustrate concepts for particular methods, with examples, and give references to alternatives. Y1 - 2019 U6 - https://doi.org/10.3390/a12090197 VL - 12 IS - 9 SP - 197 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Maierhofer, Christiane A1 - Richter, Regina ED - Cardone, Gennaro T1 - Data Enhancement for Active Thermography T2 - E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, Naples N2 - Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise. Y1 - 2012 ER - TY - JOUR A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Maierhofer, Christiane A1 - Richter, Regina A1 - Röllig, Mathias T1 - Fast Defect Shape Reconstruction Based on the Travel Time in Pulse Thermography JF - Nondestructive Testing of Materials and Structures Y1 - 2013 VL - 6 SP - 83 EP - 89 ER - TY - GEN A1 - Götschel, Sebastian A1 - Weiser, Martin A1 - Schiela, Anton ED - Dedner, A. ED - Flemisch, B. ED - Klöfkorn, R. T1 - Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox T2 - Advances in DUNE N2 - This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. Y1 - 2012 SP - 101 EP - 112 PB - Springer ER - TY - GEN A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin ED - Pennec, X. ED - Joshi, S. ED - Nielsen, M. T1 - Direct LDDMM of Discrete Currents with Adaptive Finite Elements T2 - Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. Y1 - 2011 SP - 1 EP - 14 ER - TY - JOUR A1 - Günther, Andreas A1 - Lamecker, Hans A1 - Weiser, Martin T1 - Flexible Shape Matching with Finite Element Based LDDMM JF - International Journal of Computer Vision N2 - We consider Large Deformation Diffeomorphic Metric Mapping of general $m$-currents. After stating an optimization algorithm in the function space of admissable morph generating velocity fields, two innovative aspects in this framework are presented and numerically investigated: First, we spatially discretize the velocity field with conforming adaptive finite elements and discuss advantages of this new approach. Second, we directly compute the temporal evolution of discrete $m$-current attributes. Y1 - 2013 U6 - https://doi.org/10.1007/s11263-012-0599-3 VL - 105 IS - 2 SP - 128 EP - 143 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Schneider, Philipp-Immanuel A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Weiser, Martin A1 - Burger, Sven T1 - Solving inverse problems appearing in design and metrology of diffractive optical elements by using Bayesian optimization JF - Proc. SPIE Y1 - 2018 U6 - https://doi.org/10.1117/12.2315468 VL - 10694 SP - 1069407 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Weiser, Martin A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Bodermann, Bernd A1 - Burger, Sven T1 - Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion JF - Proc. SPIE Y1 - 2017 U6 - https://doi.org/10.1117/12.2270596 VL - 10330 SP - 1033004 ER - TY - JOUR A1 - Horenko, Illia A1 - Weiser, Martin A1 - Schmidt, Burkhard A1 - Schütte, Christof T1 - Fully Adaptive Propagation of the Quantum-Classical Liouville Equation JF - J. Chem. Phys. Y1 - 2004 UR - http://publications.imp.fu-berlin.de/65/ U6 - https://doi.org/10.1063/1.1691015 VL - 120 IS - 19 SP - 8913 EP - 8923 ER - TY - JOUR A1 - Huynh, Ngoc A1 - Chegini, Fatemeh A1 - Pavarino, Luca A1 - Weiser, Martin A1 - Scacchi, Simone T1 - Convergence analysis of BDDC preconditioners for hybrid DG discretizations of the cardiac cell-by-cell model JF - SIAM Journal on Scientific Computing N2 - A Balancing Domain Decomposition by Constraints (BDDC) preconditioner is constructed and analyzed for the solution of hybrid Discontinuous Galerkin discretizations of reaction-diffusion systems of ordinary and partial differential equations arising in cardiac cell-by-cell models. The latter are different from the classical Bidomain and Monodomain cardiac models based on homogenized descriptions of the cardiac tissue at the macroscopic level, and therefore they allow the representation of individual cardiac cells, cell aggregates, damaged tissues and nonuniform distributions of ion channels on the cell membrane. The resulting discrete cell-by-cell models have discontinuous global solutions across the cell boundaries, hence the proposed BDDC preconditioner is based on appropriate dual and primal spaces with additional constraints which transfer information between cells (subdomains) without influencing the overall discontinuity of the global solution. A scalable convergence rate bound is proved for the resulting BDDC cell-by-cell preconditioned operator, while numerical tests validate this bound and investigate its dependence on the discretization parameters. Y1 - 2023 VL - 45 IS - 6 SP - A2836 EP - A2857 ER - TY - CHAP A1 - Krause, Rolf A1 - Weiser, Martin T1 - Multilevel augmented Lagrangian solvers for overconstrained contact formulations T2 - ESAIM: ProcS N2 - Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems. Y1 - 2021 U6 - https://doi.org/10.1051/proc/202171175 VL - 71 SP - 175 EP - 184 ER - TY - JOUR A1 - Lubkoll, Lars A1 - Schiela, Anton A1 - Weiser, Martin T1 - An optimal control problem in polyconvex hyperelasticity JF - SIAM J. Control Opt. N2 - We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented. Y1 - 2014 U6 - https://doi.org/10.1137/120876629 VL - 52 IS - 3 SP - 1403 EP - 1422 ER -